

Teaching Critical Thinking

Debra Fowler
Center for Teaching Excellence
Texas A&M University

Key Components

- Utilize a defined process or model
- Incorporate and practice the model at all levels (faculty, TAs, and students)
- Require reflection and metacognition in all aspects of a course or experience
 - Reflection: conscious exploration of one's experience
 - Metacognition: thinking about one's own thought processes

Program Level Learning Outcome Rubric - Zachry Department of Civil Engineering, Dwight Look College of Engineering, Texas A&M University

8. Problem recognition and solving

After graduation, the student will be able to:

Develop problem statements and solve fundamental civil engineering problems by applying appropriate techniques and tools.

	Performance Indicators	4	3	2	1
		Desired level at graduation.	Minimum acceptable level at graduation.	Intermediate level.	Level when student enters CVEN (ofter completing CBK).
a.	Problem Recognition	Synthesize from disparate information a comprehensive statement of a problem suitable for formulating a civil engineering solution.	Define the types of problems that an individual civil engineer (her/himself or another person) is competent to address consistent with ethical standards for licensed engineers. Define the information required to characterize an engineering problem and formulate a solution.	Categorize a wide range of civil engineering problems among subdisciplines and branches of knowledge (e.g., structural problems versus geotechnical problems versus construction management problems, etc.).	Identify problems that civil engineers typically solve in practice (e.g., long traffic delays, inadequate water supplies, etc.).
b.	Problem Generalization	Design solution methods based on approaches in different application areas.	Explain generalized concepts and manifestation in different areas.	Identify commonalities between civil engineering and problems in everyday life.	Identify types of problems found in everyday life.
c.	Problem Solving	Apply, working independently and in teams, standard civil engineering problem solving techniques with high levels of uncertainty and ill-definition.	Apply, working independently and in teams, standard civil engineering problem solving techniques with minor levels of uncertainty and ill-definition.	Explain the use of multiple civil engineering problem solving techniques for well-defined problems in multiple subdisciplines.	Use basic mathematical and scientific principles to solve elementary, well defined problems in math and science.
d.	Critical Thinking	Analyze and critique information, perspectives, experiences, and personal thought processes when analyzing problems and synthesizing problem solving approaches.	Demonstrate awareness or analysis of one's own learning or thinking processes to recognize and solve problems.	Summarize strategies in analyzing one's own learning or thinking processes in order to recognize and solve problems.	Recognize one's own learning and thinking processes and fundamental limitations.

Models help support and develop critical thinking skills

- Paul and Elder:

 Critical Thinking
 Concepts and Tools
- Wolcott and Lynch: Steps for Better Thinking
- Chaffee: Thinking Critically

Critical Thinker

Paul and Elder (2001)

- Raises vital questions and problems, formulating them clearly and precisely;
- Gathers and assesses relevant information, using abstract ideas to interpret it effectively;
- Comes to well-reasoned conclusions & solutions, testing them against relevant criteria & standards;
- Thinks open-mindedly within alternative systems of thought, recognizing & assessing, assumptions, implications, and practical consequences; and
- Communicates effectively with others in figuring out solutions to complex problems.

Elements of Thought

Adapted from Paul & Elder, 2001

Checklist for Reasoning

Paul and Elder (2001)

- All reasoning
 - has a <u>PURPOSE</u>
 - is an attempt to <u>FIGURE</u> something out, to settle some <u>QUESTION</u>, solve some <u>PROBLEM</u>
 - is based on ASSUMPTIONS
 - is done from some POINT OF VIEW
 - is based on <u>DATA, INFORMATION & EVIDENCE</u>
 - is expressed through, and shaped by <u>CONCEPTS & IDEAS</u>
 - contains <u>INFERENCES</u> or <u>INTERPRETATIONS</u> by which we draw
 <u>CONCLUSIONS</u> and give meaning to data
 - has <u>IMPLICATIONS</u> and <u>CONSEQUENCES</u>

Developmental Framework for Critical Thinking

Steps for Better Thinking Performance Patterns, http://www.wolcottlynch.com

Developing Good Questions

Powerful Questions:

- Generate curiosity
- Stimulate reflective conversation
- Are thought-provoking
- Invite critical thinking and new possibilities
- Stay with students
- Touch a deep meaning
- Ask the un-askable

Evoke more questions

"If I had an hour to solve a problem and my life depended on the solution, I would spend the first 55 minutes determining the proper question to ask, for once I know the proper question, I could solve the problem in less than five minutes."

-Albert Einstein

Powerful Questions

Why,

How,

What

Who, When, Where

Which, Yes/No

Stimulate a deeper level of thinking

Less Powerful

Example From Group Project Reflection Exercise

- Are you satisfied with how our group is working together?
- When have you been most satisfied with how our group works together?
- What is it about working with our group that you find most satisfying?
- Why might it be that our group has had its ups and downs?

Question Activity

- Think of a concept you teach in your class and develop questions at each level in the pyramid that you can pose to students.
- How did the questions change the level of thinking required to answer it?

Share with a colleague.

Incorporating Critical Thinking

- Gather baseline data
- Refine coursework over several semesters (a sequence of courses not just one)
- Pay particular attention to weaknesses in the ability of your students to identify the problem, relevant information, and uncertainties
- Introduce students to your chosen model
- Recognize need for students to give up old ways of thinking and adopt new ways of thinking

Consider implementation across the curriculum

References

- Chaffee, J. (2000). *Thinking Critically*. (6th ed.). Stamford, CT: Cengage Learning
- Paul, R., & Elder, L. (2014). The Miniature Guide for Critical Thinking Concepts & Tools (7th edition). Dillon Beach, CA: Foundation for Critical Thinking. http://www.criticalthinking.org/store/products/the-miniature-guide-to-critical-thinking-concepts-amp-tools-7th-edition/156
- Vogt, E. E., Brown, J. & Isaacs, D. (2003). The art of powerful questions: Catalyzing insight, innovation, and action. Whole Systems Associates: Mill Valley, CA.
- WolcottLynch Educator Resources: <u>http://www.wolcottlynch.com/EducatorResources.html</u>

Bloom's Revised Taxonomy

Creating—Generating new ideas, products, or ways of viewing things. Outcome verbs: design, construct, plan, produce, invent.

Evaluating—Justifying a decision or course of action. Outcome verbs: Hypothesize, critique, experiment, judge, conclude.

Analyzing—Breaking information into parts to explore understandings and relationships. Outcome verbs: Compare, organize, deconstruct, interrogate, diagram, correlate.

Applying—Using information in another familiar situation. Outcome verbs: Implement, carry out, use, execute, solve.

Understanding—Explaining ideas or concepts. Outcome verbs: Interpret, summarize, paraphrase, classify, explain.

Remembering—Recalling information. Outcome verbs: Recognize, list, describe, retrieve, name, find.

Bloom's Taxonomy

Bloom's Original

Anderson's Revised

Skills Assessed by the Critical thinking Assessment Test (CAT)

Evaluating Information and Other Points of View

- Separate factual information from inferences
- Interpret numerical relationships in graphs
- Understand the limitations of correlational data
- Evaluate evidence and identify inappropriate conclusions

Creative Thinking

- Identify alternative interpretations of data for observations
- Identify new information that might support or contradict a hypothesis
- Explain how new information can change a problem

Learning and Problem Solving

- Separate relevant from irrelevant information
- Integrate information to solve problems
- Learn and apply new information
- Use mathematical skills to solve real-world problems

Communication

Communicate ideas effectively

