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Abstract

While logic has sometimes tended to lead to oversimplifica-
tion and abstraction, it has also made it possible to refine philo-
sophical problems pertaining to science so as to give them
rigor and precision, and in some cases, to solve them defini-
tively. There are too many different cases to provide a helpful
overview, so I will discuss several examples that I have found
especially telling concerning the value of logic. I will take up
two issues concerning definability and one issue in epistemol-
ogy. They concern the problem of understanding theoretical
terms in physics and what is known as the problem of old evi-
dence.

1 The Problem of ‘Implicit’ Definability

How theoretical terms are related to what we can observe and measure has
been a recurrent problem in philosophy of science. When the theoretical
scene changes, new terms appear and to understand what they mean seems
to require learning the new theories, as if they can only be understood ‘from
within’ those new theories.

I will begin with a famous historical example. In the 17th century, Carte-
sians considered Newton’s introduction of the new concepts of mass and
force a return to the ‘occult qualities’ of the medievals. In the 19th cen-
tury, however, there were sustained efforts to provide reductive accounts of
those concepts. Mach’s work is the best known. His attempt and its diffi-
culties presaged the wider ranging controversies about theoretical terms in
our own time, which we will address in turn.

1.1 Attempted definitions of mass

In the context of classical physics, all measurements are reducible to se-
ries of measurements of time and position, so we may designate as basic
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observables all quantities that are functions of time and position alone.
Called the kinematic quantities, these include velocity and acceleration,
relative distances and angles of separation. They do not include mass,
force, momentum, kinetic energy (the dynamic quantities). To some ex-
tent the values of the latter can be calculated (within the theory) from the
basic observables. That is precisely what inspired the many proposed ‘def-
initions’ of force and mass in the nineteenth century, and the more recent
axiomatic theories of mechanics in which mass is not a primitive quantity.

The seminal text is Mach’s proposed ‘definition’ of this concept within
the theory, in a chapter called “Criticism Of The Principle Of Reaction And
Of The Concept Of Mass” (Mach 1883: 264ff). He writes, in somewhat
tentative fashion:

If, however, mechanical experiences clearly and indubitably
point to the existence in bodies of a special and distinct prop-
erty determinative of accelerations, nothing stands in the way
of our arbitrarily establishing the following definition:

All those bodies are bodies of equal mass, which, mutually
acting on each other, produce in each other equal and opposite
accelerations.

[...] That these accelerations always have opposite signs, that
there are therefore, by our definition, only positive masses,
is a point that experience teaches, and experience alone can
teach. In our concept of mass no theory is involved; ”quantity
of matter” is wholly unnecessary in it; all it contains is the
exact establishment, designation, and denomination of a fact.
(pp. 266-7)

While the ‘definition’ is formulated in terms that are purely kinematic,
Mach clearly realized that there is an empirical fact behind it, so to speak,
in that at least the law of equality of action and reaction must be presup-
posed. But Mach’s idea of a definition does not meet the standards devel-
oped since then.

1.1.1 Critique of the definition

As Patrick Suppes emphasized, if we postulate with Newton that every
body has a mass, then mass is not definable in terms of the basic observ-
ables, not even if we take force for granted (cf. Suppes 1957: 298). For,
consider, as simplest example, a model of mechanics in which a given body
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has constant velocity throughout its existence. We deduce, within the the-
ory, that the total force on it equals zero throughout. But every value for its
mass is compatible with this information.

Could Mach possibly have missed this obvious point? It seems unlikely.
It appears rather that his purpose was to present what in his book on the
theory of heat was called a coordination (Mach 1896: 52). The concept
of mass is introduced within the theory by specifying precisely what will
count as a measurement of mass, by procedures that presuppose the em-
pirical correctness of Newton’s third law of action and reaction. These
procedures are explored in some detail in a previous section (Mach 1883:
247ff.). What Mach thinks of as the axiomatizations of the empirical core
and the general theory of classical mechanics is not the same enterprise as
what 20th century logicians consider to be definition and axiomatization.
But Mach’s work has the virtue of focusing on the relation between the
mathematics and experimental practice.

Nevertheless, Suppes has a point, and it is clear that if Mach wants to
have the theory imply that every body has a mass, then he is involved in a
modal or counterfactual assertion about what would happen under suitable,
possible but not always actual, conditions.

What are those conditions, and to what extent do they determine the
masses of bodies, relative to the theory? Here the seminal work was by
Pendse (1937, 1939, 1940) to determine how much information about a
body (possibly concerning a number of distinct times) would allow one to
calculate its mass (cf. Jammer1964: 92-95). It appeared that in almost all
cases, the kinematic data would determine the mass. In response to Suppes,
Herbert Simon (1954, 1959, 1966) discussed a measure on the class of
models of Newtonian particle mechanics, and proved that by that measure
mass is definable almost everywhere. However, although this measure was
presented as ‘natural’, we must acknowledge the infinity of exceptions this
“almost everywhere” allows.1 Such results are scant comfort for someone
who wishes to eliminate mass as a primitive concept.

To sum up: there are models of mechanics (that is, worlds allowed as
possible by this theory) in which a complete specification of the basic ob-
servable quantities does not suffice to determine the values of all the other
quantities. Thus the same observable phenomena equally fit more than one
distinct model of the theory.
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1.1.2 Bressan: Necessity rather than counterfactuals

Use of counterfactual language can raise eyebrows even among the friends
of modality. Is it possible at least in the present case to replace the coun-
terfactuals with the alethic modalities, necessity, possibility, ...? To do so
was the aim of Aldo Bressan (1973), who devised a subtle and rich ac-
count of the modalities and constructed formal proofs of adequacy for his
axiomatization of mechanics. While I do not wish to discuss this work in
detail, there is a problem concerning the specific formulation adopted by
Bressan, and it concerns a quite general difficulty for the understanding of
modalities in nature. In his formulation, Bressan asserts for each body U a
conditional :

(If a certain experiment is performed on U then the outcome is real num-
ber ρ)

which he ranks as necessary, and as satisfied by a unique number ρ. Upon
analysis, it then appears that this means that in all physically possible cases,
this experiment upon U yields ρ.

What we need to ask then, however, is: what are the physically pos-
sible cases? They cannot be those logically possible cases that are com-
patible with the laws of mechanics, for the laws, being general, will not
entail information about characteristics of individual, specific bodies. If
to those laws we add factual information about U, phrased in purely kine-
matic terms, there will still be in general many alternatives left open. That
is just our initial problem returning: relative to all that, if U is always un-
accelerated, it is as possible that U has one mass as that it has another.

So the necessity cannot be understood as ‘nomological’ in the sense of
‘deriving from laws plus kinematic factors’. It would have to be a sort of
necessity that is specific and different from body to body. In other words,
this program needs very specific de re modalities or essences or the like.
Suppose, however, that the mode of response of body U to a certain kind
of experiment is introduced as an essential property of U, by postulate.
Then we can hardly count the manner in which mass has been eliminated
from the primitive concepts of mechanics as a gain over the reliance on
counterfactuals.

1.1.3 Alternative approaches to mass in mechanics

In the axiomatic theories of mechanics developed in this century, we see
many different treatments of mass. In the theory of McKinsey, Sugar, and
Suppes (1953), as I think in Newton’s own, each body has a mass. In
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Hermes’s theory, the mass ratio is so defined that if a given body never
collides with another one, there is no number which is the ratio of its mass
to that of any other given body. In Simon’s, if a body X is never accelerated,
the term ‘the mass of X’ is not defined. In Mackey’s any two bodies which
are never accelerated, are arbitrarily assigned the same mass.2

What explains this divergence, and the conviction of these authors that
they have axiomatized classical mechanics? Well, the theories they devel-
oped are demonstrably empirically equivalent in exactly the sense that any
phenomena which can be accommodated by a model of any one of them
can be thus accommodated by all. Therefore, from the point of view of
empirical adequacy, they are indeed equal. And this, an empiricist would
wish to submit, is just the basic criterion of success in science, to which all
other criteria are subordinate.

1.2 Attempted eliminations of theoretical terms

The dispute about mass is one specific example of the wider problem of
how to understand theoretical terms, that is, terms newly introduced to
formulate new theories that could apparently not be expressed in the lan-
guage up till that moment. While the program of providing defnitions of
the sort that Mach sought, or Bridgman’s ‘operational definitions’ for all
such terms, or the early positivist attempt to understand the language of
science through its relation to just ‘observation vocabulary’ alone, have
long since been definitively rejected, there is still a related idea. That is the
persistently seductive philosophical notion that all theoretical terms have a
meaning precisely determined by the roles they play in scientific discourse.
That is the idea of implicit definition.

Hilbert is generally credited with making this idea precise. When it ran
into heavy weather, many logical tours-de-force were tried to either de-
fend or reformulate it in defensible form. After Hilbert, the idea jour-
neyed through writings of Frank Ramsey, David Lewis, and Frank Jackson
to morph recently into the ‘Canberra Plan’ (Braddon-Mitchell and Nola
2009b). Here I will describe some of this history, and the argument that
new developments in logic - most especially, Beth’s theorem on definabil-
ity – should have spelled the end of these attempts to use the notion of
‘implicit definition’ and rescued philosophy of science from the seduction
of this mirage.
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1.2.1 Hilbert’s introduction of ‘implicit definition’

Early in the century, Hilbert introduced the notion of “implicit definition”
in connection with the meanings of terms in geometry. In commenting
on his own axiomatization of Euclidean geometry, where such terms as
“point” and “between” occur as primitive, Hilbert wrote ”The axioms of
[order] define the idea expressed by the word ‘between’.” (Hilbert 1902: 5)
And more generally, he took the axioms to be components of the definition
of the terms that are primitives of the theory.

What are we to make of this? At first blush, Hilbert’s proposal may sound
very plausible. When we understand the axioms, and are able to deduce
theorems, to solve problems posed concerning the system, how could we be
said not to understand what we are doing? Yet the doing consists entirely
in the systematic use of the terms introduced in the formulation of that
theory ... . But the question started with the words “When we understand
the axioms”; how could we be said to understand the axioms if we do not
already understand the terms in them?

Hilbert’s views about ”implicit definition” were immediately subjected
to criticism by Frege in correspondence. Hilbert did not agree to have the
correspondence published, but Frege then presented his side in a review
(Frege 1903), to express what must surely puzzle everyone about Hilbert’s
notion. Perhaps the word “between” will have its meaning fixed by some
axioms, in which other terms occur that we already understand. And per-
haps another of those terms could have its meaning fixed by those axioms
if we take “between” as understood. But circularity seems to threaten if we
suppose that all the terms occurring in the axioms have their meaning fixed
in this manner.

I say “seems to threaten”; not everyone has seen this as a real threat. In
fact, despite Frege’s vigorous critique, the idea proved tremendously ap-
pealing and continued in a long life, though in various forms, often highly
ingenious and always apparently responsive to philosophical puzzles.

1.2.2 Quine’s ‘Implicit definition sustained’

In an article that we must mainly read as ironic, Quine [1964] purported to
have rescued the idea of implicit definition, to his own dismay. His dismay
with the idea is clearly expressed at the beginning:

What is exasperating about the doctrine is its facility, or cheap-
ness, as a way of endowing statements with the security of
analytic truths without ever having to show that they follow
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from definitions properly so called, definitions with eliminable
definienda. (Quine 1964: 71)

So what is the argument that purports to support that doctrine? Assume
that a certain empirical theory -for example, chemistry- is true, and can
be formulated with predicates F1, ..., Fn and a single axiom A(F1, ..., Fn).
Then it is satisfiable, and there will be a structurally similar statement in
arithmetic A(K1, ...,Kn) that is an arithmetic truth. (Here Quine is draw-
ing on the Loewenheim-Skolem theorem and some related results in meta-
logic; we’ll return to those in a moment.) Now proceed as follows: have a
language that includes arithmetic and also predicates G1, ..., Gn which are
interpreted to mean the same as the original chemical predicates F1, ..., Fn.
Do not introduce any axiom at all! As Quine shows, it is now possible to
define the predicates F1, ..., Fn in terms of those new predicates Gi and
defined predicates Ki so that

1. the statement A(F1, ..., Fn) will be true just because A(G1, ..., Gn)
happens to be true (assumption!) andA(K1, ...,Kn) is an arithmetic
truth, and

2. the statement A(F1, ..., Fn) is deducible from the arithmetic truth
A(K1, ...,Kn)

How did Quine perform this leger-de-main? The assumption that the
theory he is considering is true played a crucial part. On that assumption,
the augmenting definitions do indeed introduce expressions co-extensive
with what they purport to define; but only on that assumption (cf. Wil-
son 1965).3 So the theory is ‘mimicked’ among the arithmetic truths; but
the idea that the formula A(F1, ..., Fn) is sufficient to give meaning to the
predicates F1, ..., Fn is spurious. Quine himself drops his ironic tone to-
ward the end, and calls the manoever “farcical” and “hocus pocus”.

1.2.3 Keeping something fixed: Winnie’s rejection

While Quine kept something - the truth of the empirical theory in ques-
tion – fixed rather surreptitiously, Winnie [1967] proposes that we explic-
itly suppose the extension of ‘observational’ terms to be fixed, and asks
whether the remaining ‘theoretical’ terms can then be said to be implicitly
defined by the axioms of the theory. The conclusion he reaches is negative.

Winnie assumes that the domain of discourse is divided into two disjoint
parts. The candidates for referents of these two sorts are thought of as the
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‘theoretical’ and the ‘observational’. If we look at a model of the theory,
we see that certain permutations of the ‘theoretical’ part need not affect
the truth-value of any of the theorems. So the extension of the theoretical
terms is not fixed by the theory, even on the assumption of fixed values for
the observational terms. Therefore the theoretical terms cannot be said, in
any sense, to be ‘implicitly’ defined by the role they play in the theory.

1.2.4 Lewis on the definition of theoretical terms

Lewis [1970] remarked that in the case of Winnie, there was still a trick in-
volved: it was not a surreptitious fixing, but rather variation, that played the
tricky role. Some predicates have extensions bridging the two parts of the
domain, although they are among old terms, that the scientists had before
formulating the new theory. For example, before atomic theory developed
in that direction, “larger” was an established term. But in the theory this
same term is also utilized (once the new terms are available) in such the-
oretical assertions as that salt molecules are larger than sodium atoms. In
Winnie’s reconstructions the extensions of those terms are allowed to vary
‘on one side’, so to speak, but not on the other. Their application on the
‘observational’ side remains the same, but in other respects, their applica-
tion is taken to be up for grabs.4

In his own proposal, Lewis insists that the new terms will receive ex-
plicit definitions, relative to an assumption of fixity for all the old terms.
He undertakes to reconstruct the theory so that this will be possible. The
first stage in arriving at the ‘correct’ formulation of the theory is to replace
it by its Ramsey Sentence – that is, a second order formula in which the
theoretical predicates are replaced by bound predicate variables. It is easi-
est to explain what a theory’s Ramsey sentence is by giving a toy example.
The little theory

Water consists of hydrogen atoms and oxygen atoms.

has as its Ramsey sentence:

There exist three properties such that water is composed of en-
tities which have the first and third property and entities which
have the second and third property.

A caricature of an example, of course. But the crucial point is the same
as for any more extensive theory: all consequences of the original theory
which can be stated entirely in the old vocabulary are also consequences of
its Ramsey sentence.
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However, if left there, Winnie’s point could be made: this Ramsey sen-
tence surely could be true in many ways. Therefore the Ramsey sentence
does not fix the meanings of the terms which we wanted to understand, the
ones that are noticeable precisely for their absence in that sentence! But
Lewis’s construal of the theory has a second stage: the Ramsey sentence
is its first postulate, but as second postulate it has an assertion to the effect
that this Ramsey sentence has a unique instantiation.

What form can this second stage really take? Here Lewis steps in Car-
nap’s footsteps, adding the Carnap Sentence. Whereas the Ramsey sen-
tence says in effect that the theory has a realization, the Carnap sentence
says that if it has a realization, then that realization is unique. We may
call their conjunction the Lewis Sentence. Among the sentences entirely
formulated in old terms, the Carnap sentence implies nothing at all. The
two postulates together imply only what the original theory implied. To
illustrate: for our little ‘water theory’ the complete new formulation of the
theory would amount to:

Lewis Sentence. There exists three and only three properties
such that water is composed of entities which have the first
and third property and entities which have the second and third
property.

It is true that, with a little ingenuity utilizing definite descriptions in
second-order language, this condition sanctions explicit definitions of those
properties.

There is however a problem that defeats Lewis’s attempt. Lewis initially
understood the properties mentioned in the Ramsey sentence extensionally:
two properties are the same exactly if they have the same instances. In ef-
fect, the quantifier “there are properties” is read as ranging over sets. But a
famous argument by Hilary Putnam (1978), not very long after Lewis’s ar-
ticle, shows that the Ramsey sentence must then have many different ways
of being true. So the Lewis sentence – which asserts unique instantiation –
is necessarily false!

That this is so, no matter how large or complex the theory, Putnam
showed on the basis of the same sorts of meta-logical results that were
mobilized earlier by Quine and Winnie: Loewenheim and Skolem’s fa-
mous theorems and their later more powerful extensions (cf. van Fraassen
1997). These theorems show that if a theory has an infinite model then it
has models of every infinite size; of course, models of different sizes do
not have the same structure.
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When Lewis himself realized this, perhaps because of Putnam’s argu-
ment, he introduced a further postulate, to the effect that some sets mark
‘natural’ divisions in nature, and some are merely ‘arbitrary’. (That there
is such a division in nature, that our predicates must “carve nature at the
joints”, is a standard idea in the sort of metaphysical realism that Put-
nam was attacking.) With that metaphysical postulate in place, the Lewis
sentence can be modified to assert, in effect, that the Ramsey sentence is
uniquely instantiated among the natural sets.

This modification of Lewis’s view cannot be refuted by Putnam’s argu-
ment, but only because there is no information about which sets are natural
and which not. In any case, the contention that the new terms can be ex-
plicitly defined can now be said to be correct only relative to this postulate
about a division in nature between natural and arbitrary divisions. That is
really a far cry from the original idea that the new terms are wholly under-
stood given our understanding of the old terms.

1.2.5 The relevance of Beth’s theorem

As we just saw, Lewis appreciated that there is not such a great distance
between implicit and explicit definition. For him this opened the hope
that new theoretical terms could after all be explicitly defined, and hence
understood, in old terms. But the results in meta-logic mentioned above,
point in the opposite direction: that the impossibility of explicit definition
also eliminates any genuine or non-trivial sense of implicit definability.

This is where the philosophy of science could and should have benefit-
ted clearly from attention to Beth’s theorem (Beth 1953). First of all, the
notions of explicit and implicit definability are there clarified to the point
of being equipped with precise, applicable criteria. The notion of explicit
definition itself is not without its complexity (cf. Wilson 1965). Suppose
we write, at the beginning of a theory, for a certain predicate X ,

X(x) = defY (x)

Then we can use the sentence (x)(Xx ≡ Y x) in any proof, just in the
way we can use a tautology. But the former is a statement outside and
about the theory, whereas the latter is a statement in the language of the
theory. There are severe restrictions on this practice, despite the popular
impression that we can always just define words any way we like. For
example, we cannot introduce the new name a by defining the predicate

a = x = defY (x)
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unless it is part of the theory that the condition Y (...) is uniquely satis-
fied. For example, we can’t define the number k by the equation of “k = x”
with “x = x.x”, because 1 = 1.1 but also 0 = 0.0 , so that would have the
effect of implying that 1 = 0.

So Beth rightly decided that the two notions “explicitly definable in the-
ory T ” and “implicitly defined by theory T ” need criteria of application.
The criteria he offered do not go back and forth between what is done ‘out-
side’ the theory and what is admissible in deductions ‘inside’ the theory,
thus avoiding such difficulties as the above. For a one-place predicate F ,
and a set of axioms A, we have the criteria:

F is explicitly definable relative to A in terms of G1, ...Gn if
and only if there is a formula U(G1, ..., Gn) in which no other
non-logical signs occur, such that

(x)[F (x) ≡ U(G1, ..., Gn)(x)]

is derivable from A

F is implicitly defined by axioms A if and only if, for a pred-
icate G not occurring in A, the sentence (x)[F (x) ≡ G(x)] is
derivable from the union of A and (G/F )A

where (G/F ) is the operation of replacing all occurrences of F by oc-
currences of G. With these definitions in hand, we have the result which
ends once and for all the suggestion that there is a non-trivial extended
sense of “definition” in which a theory defines, fixes the meaning, of its
own primitive terms:

Beth’s Theorem. The predicate F is implicitly defined by
axioms A if and only if F is explicitly definable relative to A
in terms other than F .

Between the results of Loewenheim and Skolem and Beth’s theorem the
idea that theoretical terms cannot be explicitly defined, yet have their mean-
ing presented implicitly within a pre-theoretical understanding, by their
roles in inference, loses any basis it could possibly have.

2 The Problem of Old Evidence

Traditional epistemology, focused on warrant, justification, and knowl-
edge, flourishes still today, but there is little contact between its literature
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and that of the philosophy of science. Yet epistemological concepts such
as evidence, and a concern with the rationality of changes in our view of
what the world is like, are central in philosophy of science as well. One
development that has separated the two areas in our discipline is the influ-
ence of probabilism in the latter. That is the view that the form of opinion
is best understood as judgment made in terms of probability. This includes
certainty (probability equal to 1) as a limiting case, not at all precluded, but
to be treated within the continuum of degrees of probability.

At the same time, it is admitted everywhere that the probability calcu-
lus is just a beginning, and that there are serious problems remaining for
the modeling of opinion and rational opinion change. The problem of old
evidence is one of these problems; it concerns the rationality of opinion
change when the reason given is some information that was actually al-
ready known for some time before the change. For example, the facts
about the perihelion of Mercury had been known for decades, but were
cited as evidence for Einstein’s General Theory of Relativity when that
was proposed. If the prior opinion was rational and coherent, while that
old evidence was already known, how could it now suddenly be brought
up to demand a change in view?

2.1 Evidence, confirmation, and probability

A simple, perhaps the most naı̈ve, form of probabilism is known as the
orthodox Bayesian position, which includes a strict rule for how opinion
must accommodate new evidence. This picture of our epistemic situation
has evidence coming to the agent/subject in the form of a proposition E.
Taking E as evidence consists in amending the prior opinion by simple
conditionalization on E, which can be explained as follows.

The prior opinion is represented by a probability function P , which as-
signs probabilities to all the propositions the agent understands. The num-
ber P (A) that P assigns to proposition A is called the agent’s prior cre-
dence in A. The new, posterior, opinion is then represented by the function
PE – read as “P conditionalized on E” – which is defined by:

If A is any proposition (for which the prior credence is not
zero) then the posterior probability PE(A) is just the ratio of
two prior probabilities, namely P (E andA) divided by P (E).

(We also write P (A|E) for PE(A). When P (E) = 0, the conditional
probability is not defined.) The concept of confirmation typically associ-
ated with this simple account is this:
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proposition E confirms hypothesis H (itself a proposition) for
an agent if his posterior credence in H – his credence in H
conditional on E – is higher than his credence inH tout court.

There are various objections to this proposed explication of the concept
of confirmation; we’ll consider just one here. It was Clark Glymour [1980]
who first emphasized the difficulty this engenders for evidence that had
already been known. If the agent has already, previously, become certain
thatE, thenP (E) = 1. From this it follows then that, in the above sense,E
confirms no hypothesis whatever for that agent, for dividing by the number
1 has no effect.

That is difficult to reconcile with well known episodes of theory change
in the sciences. It would make nonsense of such claims as that the advance
in the perihelion of Mercury, known for a half-century before Einstein’s
work, confirmed Einstein’s theory of relativity.

2.2 Responses to the problem of old evidence

Three possible responses come immediately to mind, at least in outline
form. The first is that no scientist is ever truly certain about E, whatever
it may be. That does not remove the problem on a practical level, for if
the probability of E is negligibly smaller than 1 then dividing by it makes
only a negligible difference. The second response is that if today we say
that E, long since believed with certainty, confirms H , we make reference
not to our present actual epistemic state but to some alternative(s) thereto
– perhaps the opinion we had way back when, before learning that E. But
that is not realistic, because what we learned since then is certainly playing
a role in our present reasoning, which could hardly have been carried out a
long time ago.

There is a third response that has promise, and this is what I will examine
in detail. It is the response that in this sort of case, the phrase ‘E confirms
H’ may well be used, but the attention is actually drawn not to E, but
to something else (having to do with E) which is a new discovery, and
does make H more probable. The idea is that, for example, when the
scientific community got to the point when it could say that the advance
in the perihelion of Mercury confirmed Einstein’s theory, they had indeed
just learned something new. The new information was not that fact about
Mercury, but another fact that has to do with it. Conditionalizing on that
new fact had increased their credence in Einstein’s theory.
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What could that mysterious new fact be? Daniel Garber proposed this
response, and elaborated it (Garber [1982]).

2.3 Postulating new ‘logical’ evidence 5

Put most bluntly, this response postulates that there is a special proposition,
a function of H and E, which is newly learned at that point, and is such
that conditionalizing on that proposition increases the probability of H .

Obviously Garber’s real contribution can’t just be this; his solution con-
sisted in a proposed identification of that special proposition. The value
and importance of Garber’s work, and the reason why we speak here of a
solution, is that he attempts to tell us what this proposition is – to identify
a proposition which can play the required role and to show us that it can.

For Garber tells us that this proposition is to be identified as the propo-
sition that H implies E, which he symbolized with the ‘turnstile’ symbol
as (H ⊢ E). When an agent claims that previously known evidence
E confirms H , he should be understood to assert that his posterior cre-
dence P(H⊢E)(H) is greater than the prior credence P (H). What scientists
learned around the year 1919 is that Einstein’s theory correctly predicted –
that is, implied – the advance in the perihelion of Mercury, which was not
implied by Newton’s theory. It was learning this implication that confirmed
Einstein’s theory.

Clearly some larger story must be told about just what that special propo-
sition is. The use of the word “implies” gives us a clue to what that story
should be but hardly suffices by itself. In fact, our intuitive understanding
of this word immediately suggests that the problem of old evidence will
just return at second remove. If H implies E, is that not a logical truth,
which this person must have all along assigned probability 1 on pain of
incoherence?

Here Garber steps in to write a (neo-) Bayesian theory for the logically
non-omniscient subject. For this subject, the proposition (H ⊢ E) which
we read as ’H implies E’, is logically contingent. Given our worries about
this solution, we recognize that Garber should be sensitive to the demand
that identification of the proposition called (H ⊢ E) as having that meaning
be reasonably warranted. Indeed he is. In response, he imposes the validity
of modus ponens as a minimal condition on the conceptual role of (H ⊢
E). That is, the meaning of this special proposition must be such that the
inference from premises H and (H ⊢ E) to conclusion E is valid.
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2.4 Probabilist versions of implication and modus ponens

To explain this, Garber needs a probability counterpart of the relation of
implication. What he chooses, implicitly, is this: A impliesB exactly if the
conditional probability ofB givenA equals 1, for all probability functions,
regardless of background assumptions. This bestowing of certainty, by the
antecedent on the consequent, is meant to provide a probabilistic version
of implication, that we can read intuitively as “Given the antecedent, the
consequent is certain”.

In view of the definition above of conditional probability, this can be
stated equivalently as:

A implies B if and only if for all probability functions P and
all propositions K:

1. (i) P (B|A and K) = 1 whenever P (A and K) > 0, or
2. (i) P (B and A and K) = P (A and K)

(This is a little redundant, since conditionalizing P on K, if P (K) > 0,
produces another probability function.) When Garber imposes the validity
of modus ponens as a condition on the language containing the statement
(H ⊢ E) he does so with, in effect, the following condition:

Condition K. For all propositions K, the probability of E,
given both H and (H ⊢ E) and K, if defined, equals 1.

In symbols, P (E|H and (H ⊢ E) and K) = 1 whenever
defined;

equivalently, P (E and H and (H ⊢ E) and K) = P (H and
(H ⊢ E) and K)

So far Garber’s account. But the logician must ask: does the validity
of modus ponens provide reasonable warrant for that identification? Con-
junction and material implication obey modus ponens too: the inferences
from premise H and either premise (H and E) or premise (not H or E)
to conclusion E are valid too. These alternatives are entirely unsuitable.
Conjunction and material implication would not do, because in the exam-
ples the agent does not learn (H and E), and he already knew that (not H
or E) because he knew E.

The conclusion, apparently inescapable, is that Garber’s solution has not
been substantiated unless he can make it work in the presence of minimal
adequacy conditions for the interpretation of(H ⊢ E) as ‘H implies E’,
and that modus ponens alone is not enough.
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2.5 The Conditional Proof Requirement

The most obvious extra condition to be demanded for (H ⊢ E) is the
validity of some suitable form of conditional proof. That form of proof
would be codified in the rule:

if E is derivable from premises Z together with H , then (H ⊢
E) is derivable from Z

At this point we must proceed as sympathetically as possible, to see how
Garber could have imposed such a requirement in addition to modus po-
nens without debilitating his solution.

As a first attempt we might try to bring in background knowledge that
characterizes the moment of theory change. If H implies E for the agent
at this moment, that may well be in part because the agent holds to be true
some theory T , that perhaps he knows only by description as the theory
axiomatized in some area of science, and does not pretend to understand
it very well. The point is that the agent himself may not have insight into
the content of background theory T , but learns the fact that T and H to-
gether imply E by the standards of classical logic. If that is the story, the
characterization of the conceptual role of (H ⊢ E) is this:

(H ⊢ E) expresses the logically weakest proposition which
together with H and T implies E in classical logic.

That certainly satisfies both the rules of modus ponens and of conditional
proof. But here logic steps in: it is unfortunately provable that this iden-
tifies (H ⊢ E) as the material implication [not (T and H) or E]. It will
not do because at the prior time when we deemed T to be true and knew
E, logical coherence required that we deemed (H ⊢ E) to be true as well,
already. It could not appear as new evidence, logically contingent relative
to the agent’s prior opinion.6

Of course, similar puzzles have been encountered in the study of modal
logic. So from a formal point of view at least we may see some other
options. The sentence (H ⊢ E) will have to mean that H implies E in
some more full-blooded sense. Perhaps it could be something like that H
guarantees the truth of E in a large variety of cases and not only in the
actual one – or something that bears some formal similarity to such modal
statements.

So let us follow Garber’s lead, in his reconstrual of the rule of modus
ponens, and ask if we can impose some condition analogous to K to honor
the intuition of the validity of conditional proof.
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That means that we have to formulate conditions under which it is a mat-
ter of logic that (H ⊢ E) is certain, relative to given premises and back-
ground knowledge, whatever that may be. While the agent could perhaps
newly learn that (H ⊢ E) in many ways, on the basis of logically contin-
gent evidence that might be hard to describe, there must also be a broadly
logical rule of ‘conditional proof’. That is what we tell our beginning logic
students for the “if ... then” explained as the material conditional, as well
as later on for such variants as the physically or metaphysically necessary
conditional.

So I would propose this: if it is clear that E is certain conditional on
the supposition that H , (i) regardless of what our background knowledge
is, and (ii) regardless of how we have needed to respond to new evidence,
then (H ⊢ E) is already certain. Starting to put in the symbols for the
relevant prior probability P and for how P might change in response to new
evidence, we can rephrase this as:

Condition KK If, for any possible posterior probability P ’ that
could evolve from P , and any background knowledge K, it is
the case that P ’(E|H and K) = 1, whenever defined, then
P ((H ⊢ E)) = 1;

Equivalently If, for any possible posterior probability P ’ that
could evolve from P , and any background knowledge K, it
is the case that P ’(E and H and K) = P ’(H and K), then
P ((H ⊢ E)) = 1

But again triviality threatens. The question to worry about is what that
set of probability functions is that comprises the possible posterior proba-
bility functions P’ that could evolve from P in response to new experience.
Logically speaking, at least, these could be all the functions that do not
raise zeroes, that is, that assign zero to all propositions to which P assigns
zero. Alternatively, they could be all the ways in which the current proba-
bility P could be conditionalized on new evidence. In either case, the role
of (H ⊢ E) is indistinguishable from the material conditional: they receive
the same probability always (cf. van Fraassen 1988: 161).7

So either Garber’s new connective ⊢ cannot be read as “if ... then”, or
Condition KK is too strong, or the range of possible posterior probabilities
P ’ must be especially restricted for that condition. Or perhaps this third
approach to the problem of old evidence is also on a wrong road.
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3 Conclusion

What conclusions should we draw from the examples we have now exam-
ined, of the relevance of logic to philosophy of science?

In the case of theoretical terms, implicit definability and its variants,
we can conclude quite definitively that certain popular philosophical ideas
do not survive confrontation with the Loewenheim-Skolem theorem and
Beth’s theorem.

In the case of the problem of old evidence, the conclusion is not quite so
definitive. We can say this much: if there is a way to accommodate war-
rant provided by old evidence in the Bayesian recipe for rational opinion
change, we certainly have not seen it. Exploration of what seemed the most
promising approach came to naught. As mentioned, this problem is just
one among many for the modeling of opinion in a probabilist framework.
There is currently a great deal of on-going work in ‘formal epistemology’
to improve and extend such models of opinion and reasoning.

In both cases we took up an interesting and important problem. What we
can conclude on a positive note is that attention to logic made it possible to
formulate rigorous criteria of adequacy for any proposed solutions. In that
way, it was possible to rule out certain solutions that were proposed, and
thus clear the way for more nuanced and more sophisticated approaches to
those problems. After that, it is up to us.
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Notes
1Montague (1960) is a very critical, quite dismissive review of Simon 1959. Simon’s

idea is in itself easy enough to understand, however, and the shortcomings of his formal
treatment are only amusing.

2See Jammer, op. cit., Ch. 9; Mackey, pp. 14; compare Simon’s first approach in his
1947 and 1954.

3Quine had an ulterior motive for writing this ironic article. The lesson he wants us
to draw is clear: philosophers he opposed had taken chemistry to be synthetic and arith-
metic analytic. When the true and supposedly synthetic assertions in chemistry can be
deduced from the supposedly analytic truths of arithmetic augmented with definitions, this
analytic/synthetic distinction is rendered vacuous.

4Paul Feyerabend is well known for the contention that when accepted scientific theory
changes, the meanings of the old terms, used in observation reports, does not remain the
same either. While Lewis may be read here as objecting that Winnie assumes a special
stability for the old terms, so does Lewis.

5For a full account see Jeffrey 1984 , Earman 1984, van Fraassen 1988.
6Note especially that this reasoning does not require that the auxiliary theory T be ex-

pressible in the object language – only some meta-linguistic understanding is required on
the part of the speaker to become clear on what sort of thing he means by this turnstile.

7The validity of modus ponens, Condition K, already shows that P (∼ E&H&(H ⊢
E)) = 0 so that P (∼ (H& ∼ E)|(H ⊢ E)) = 1. More importantly, consider the function
P* which is P conditionalized on the material conditional ∼ (H& ∼ E). Clearly, for any
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K, P ∗ (E&H&K) = P ∗ (H&K), so by Condition KK, P ∗ ((H ⊢ E)) = 1. But that
means that P ((H ⊢ E)| ∼ (H& ∼ E)) = 1.
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