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Game Theory in the
Social Sciences

Individuals, firms, governments and nations behave strategically, for good and bad. Over
the last few decades, game theory has been constructed and progressively refined to
become the major tool used by social scientists to understand, predict and regulate strategic
interaction among agents who often have conflicting interests. In the surprisingly anodyne
jargon of the theory, they ‘play games’. This book offers an introduction to the basic tools
of game theory and an overview of a number of applications to real-world cases, covering
the areas of economics, politics and international relations. Each chapter is accompanied by
some suggestions for further reading.

The book begins with an outline of the history of game theory, whose early achievements
were driven by the Cold War. Then, the definitions of games, strategies and solution
concepts are illustrated as informally as possible, accompanying each of them with intuitive
explanations. The remainder of the volume is entirely devoted to lay out examples related to
economic issues (technical progress, advertising, cartels, monetary and fiscal policy) and a
number of problems related to politics (voting and electoral campaigns) and international
relations and international political economy (such as the Cold War, free trade versus
protectionism, and openness versus security). The last two chapters deal, respectively,
with the role of information and the strategic manipulation thereof, and cooperation and
bargaining in games where agents may leave aside their selfish attitude and approach each
other in a somewhat different mood. These two chapters also offer appropriate examples.

The author has intentionally taken an accessible approach to the subject matter. No
particular knowledge of calculus is required to follow the book, and to grasp its message.
Therefore, this volume would suit undergraduates and masters students in the social sciences
without a background in mathematics, as well as anyone interested in understanding relevant
phenomena of contemporary economics and politics.

Luca Lambertini is Professor of Economics and Vice Dean in the Faculty of Political
Science at the University of Bologna, Italy.
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In memory of Agostino, Mario, Hugo, Corto and Tarao.
They are now sailing together into infinity.
Safely though, as Tarao is certainly the best navigator.
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Preface

I remember when rock was young,
me and Suzie had so much fun.

Sir Elton John,
Crocodile rock

I’ve always cherished the idea of becoming a story teller. To tell the bare truth, when I was
a teenager, I also dreamed of becoming a fighter pilot or a starship pilot – legitimate and
possibly quite common aspirations for a youngster. It goes without saying that what I ended
up doing for a living is neither the first nor the second. Having grown much older, and having
become a mathematical economist in the meantime, I am about to tell the closest substitute
to a story that I can possibly think of. It’s a tale of many people’s endeavours to uncover a
structure in the seemingly inextricable net of social interactions, and to give this structure
a sense. It is indeed an amazing story, and I hope you will enjoy reading it. As to holding
in my hands the throttle and stick of a jet aircraft or starship, well, I will have to wait for a
second chance in another life.

Game theory is a branch of mathematics. As such, it is just an instrument, although, unlike
much of the rest of mathematics, it is a very specific one. It has been constructed to describe
and understand social situations. Hence, this should be a topic of interest to the public at
large, as it tackles issues that most people, to some extent, are familiar with, although they
may have never thought about them as the subject of a formal investigation.

The task of choosing one’s own best behaviour and simultaneously figuring out the
behaviour of others is something we are well acquainted with in everyday life. This holds
true not only for households, which have to decide whether and how much to invest in the
education of their children, but also for firms, which have to figure out whether to carry
out research and development (R&D) projects for new products or technologies, and simi-
larly for nations facing the perspective of engaging in an arms race. The labels and objects
may change, but these examples indeed share the same underlying structure, whose essen-
tial features are summarized in a single question that this household, firm, or nation has to
answer: ‘What if I don’t do it, while others do?’ The answer shapes the resulting strategy
that the agent is going to adopt. Throughout the last quarter of a century, game theory has
become the major toolkit for our understanding of strategic interplay among individuals,
firms, political parties and nations. Indeed, the issue that triggered its initial development
was how to fight and ultimately win the Cold War without getting to a real showdown, not
how to understand firms’ behaviour. For this very reason, most of the theory’s early stages
and achievements remained under cover for a long time, as a sort of X-Files. This volume
offers a concise historical reconstruction of the development of the theory, followed by a
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friendly introduction to its instruments, and applications to the broad range of the social sci-
ences, using as little calculus as possible, so as to enable you, the reader, to intuitively grasp
the essence of economic and political issues.

Aims and style
If you can’t explain it simply,
you don’t understand it well enough.

Albert Einstein

Being no more than an introduction, the book can be used as a textbook for undergraduates
in any BA course in social studies (in particular, politics and economics). However, my main
objective was to write a book where mathematics would not scare off readers potentially
interested in grasping the flavour of a branch of applied mathematics that has become sur-
prisingly popular over the last decade or so. Accordingly, I have tried to get around the usual
obstacle of calculus, with very very few exceptions, which can be skipped without hindering
the comprehension of the subjects being treated (as we usually say, ‘a figure is worth 1000
words, while any equation cuts sales by 50 per cent’).

Moreover, although all chapters (in particular Chapters 5–10) contain several examples
and applications, they are far from being exhaustive surveys of each of the topics they deal
with. For those interested in going deeper in any direction, at the end of each chapter I have
included a paragraph containing some further reading. These appear in the bibliography at
the end of the book, together with those references that are explicitly mentioned in the text
chapters. Additionally, some of the suggested reading is not specifically connected with the
technical issues treated in a chapter; rather, it has to do with its general mood and its links
with other areas and disciplines, loosely related with the tale emerging from the chapter
itself.

I have decided to avoid an impersonal style of writing throughout the book. I will use ‘I’,
‘you’ and ‘we’, in different passages, depending on what exactly each passage is about. This
choice is motivated by my intention to talk to you and involve you in the reconstruction,
interpretation and understanding of the facts – belonging either to the discipline of game
theory or to the real world – as much as possible, although obviously I won’t get any feedback
while you read through. But I hope this style will help you to feel more at home.

Structure of the book
Do not worry about your difficulties in mathematics.
I can assure you mine are still greater.

Albert Einstein

The first chapter outlines the origins and evolution of game theory, giving also some anecdo-
tal evidence about the lives of some of the most relevant characters (Zermelo, von Neumann
and Nash, inter alia) and the initial impulse to the development of the theory at the outset of
the Cold War at the RAND Corporation.

The second chapter offers a layout of the basics of game theory: definitions, taxonomies
of games, different representations (strategic form versus extensive form), without using
calculus at all, just figures and graphs accompanying intuitive verbal arguments. It will also
spell out an intuitive explanation of what is meant by ‘rationality’ and ‘maximization’, using
some stylized examples as a warning against the indiscriminate use of these concepts.
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In Chapter 3, you will find a survey of the main equilibrium concepts for non-cooperative
games: the Nash equilibrium, dominant strategies, the focal point and subgame perfection.
This material, I stress once again, is treated as informally as possible. Famous examples
(the prisoners’ dilemma, the game of sexes, coordination games) are introduced here for
illustrative purposes as well as for future reference.

Having outlined the historical background and the reference framework of the discipline,
the rest of the book is mainly concerned with the description and comprehension of real-
world phenomena.

Chapter 4 deals with games in micro/macroeconomics, market games, public and envi-
ronmental economics: price competition with homogeneous or differentiated goods, product
and process innovation, advertising, taxation, pollution, entry and entry barriers, etc. These
examples, wherever appropriate, are also discussed in terms of policy implications.

Chapter 5 contains a simple introduction to repeated games, using the so-called folk the-
orem in order to illustrate the arising of implicit cooperation. Repeated games pop up again
in later chapters to investigate specific issues, such as the choice between protectionism and
free trade in Chapter 8.

Chapter 6 is for politics. This is a classical field that is suited to applications of game
theory. The paradox of voting is illustrated, with reference to a famous real-world case
involving Jimmy Carter, Ronald Reagan and Gerald Ford in the 1970s, and games where
parties strategically choose their respective platforms to win elections. Additionally, the pris-
oners’ dilemma generated by investing in electoral campaigns is investigated, being formally
equivalent to a game of advertising appearing in Chapter 4.

Then, Chapter 7 recounts the early views on game theory as an instrument to learn how
to win conflicts, from early examples related to World War II to Cold War episodes (such as
the Cuban missile crisis and the Euromissiles one).

The material included in Chapter 8 is strongly related to what is contained in the previ-
ous chapter, but deserves a space of its own as it covers the field of international political
economy. Here I dwell upon issues like the choice between autarky (or protectionism) and
trade (illustrating the different views that characterize the new trade theory and political sci-
ence in this respect), the trade-off between openness and security, as well as hegemony and
unipolarism.

In Chapter 9, I discuss the relevance of information, to see what happens if the latter
is either asymmetric or incomplete, i.e., if some players are less informed than others in
the same game, about some relevant piece of the game itself. In doing so, some of the
games/stories appearing in previous chapters are revisited, along with famous games that
are milestones in the development of game theory, such as Akerlof’s famous ‘market for
lemons’, to mention but one.

The last chapter is somewhat (although not completely) self-contained, as it illus-
trates the essential features of bargaining and cooperative games and the related solution
concepts (basically, the Nash bargaining solution) in order to examine some real-world
stories like the problem of mutual defence, international negotiations and environmental
issues (the exploitation of natural resources, pollution and global warming) as cooperative
set-ups.
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1 The origins: a bit of history

If you really want to hear about it,
the first thing you’ll probably want
to know is where I was born and
what my lousy childhood was like

J. D. Salinger,
The catcher in the rye

The incipit of the Catcher perfectly fits the essence of this chapter. Very much like Holden
Caulfield – but clearly not in the form of a first-person narrative – I am setting out to tell
you a story unveiling the creation and development of what is now a well-established sub-
discipline of applied mathematics, and the backbone of modern social sciences.

Nowadays, game theory provides the essential analytical instruments that virtually any-
one professionally carrying out theoretical research in the social sciences has to master.
Furthermore, predictions and normative indications produced by theoretical models based
upon game theory represent the basis for policy analysis and empirical research. This is true
in particular for economics, but largely analogous considerations apply for politics and the
social sciences as a whole. That is to say, the current state of our profession as social scien-
tists is dramatically different from what it was no more than a quarter of a century ago. The
work of those who have contributed to build up game theory has changed the way we look at
social interactions of any type, once and for all. And yet, if one interviews a sample of stu-
dents drawn from schools of economics, politics and sociology – and it doesn’t really matter
whether at the undergraduate or graduate level – it clearly emerges that they have a very
vague idea – if any at all – of the intellectual process that has generated those instruments
they are being taught to use.

In order to allow you to come to grips with the essential history of game theory, I am
setting out to accomplish a twofold task. One side of it consists in outlining the funda-
mental steps of the theory itself, without delving too much into the technicalities involved.
In summary, this requires a short reconstruction of the development of equilibrium concepts
that will be properly reviewed and then applied several times in the remainder of the book.
The other side looks, at least to me, somewhat more novel and intriguing, as it requires a
reconstruction of a number of relevant facts that affected the circulation of ideas and the
deployment of the theory, as well as its utilization in the social sciences, for decades.

1.1 Giant steps
First of all, why game theory? A more appropriate label would certainly be the theory of
strategic interaction, as this would transmit a correct idea of what it is. The reason for the
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choice of a label that immediately came into use can be traced back to the interest of our fore-
runners in parlour games such as chess, backgammon and cards.1 Indeed, what is commonly
recognized as the first formal result in game theory is

• Zermelo’s theorem (Zermelo, 1913), which refers to the outcome of a chess game.
A widely accepted view is that the theorem states that either the ‘white’ player or the
‘black’ player wins, or they draw. To be more precise, the theorem does not identify the
correct strategies for players, and does not predict the outcome of a chess game (see
Aumann, 1987, p. 461).2

Not so exciting, you say? Well, I cannot raise any particular objection, except to invite you
to consider that Zermelo’s theorem relies on the backward induction principle, which will
pop up again several times throughout this book and plays a fundamental role in game theory.
Roughly speaking, the idea is that, in a chess game with alternate moves, players must be
able to correctly recall the exact sequence of moves up to any point, and use this information
rationally to solve the game itself. Aside from this, the object of Zermelo’s attention is indeed
nothing more than a parlour game. The second fundamental step of the theory is, however,
far more relevant in itself as well as in terms of its potential applications and extensions.
This is

• John von Neumann’s minimax theorem (von Neumann, 1928), which is the first solution
concept for non-cooperative games, although applicable only to constant-sum (or zero-
sum) games, i.e., those where statements such as ‘I win, you lose’ hold systematically.
Indeed, as the original paper was published in German (like Zermelo’s), the relevance of
the minimax equilibrium concept became apparent only after the publication of the vol-
ume Theory of Games and Economic Behavior (von Neumann and Morgenstern, 1944).
This publication considerably enlarged the interest of the profession in game theory, in
addition to building up the foundations of modern microeconomics by formalizing the
expected-utility theory dating back to Ramsey (1931).

What occurred between 1928 and 1944 deserves closer inspection. You may be famil-
iar with the main character played by Peter Sellers in Stanley Kubrick’s famous movie
Dr Strangelove or: How I Learned to Stop Worrying and Love the Bomb. Dr Strangelove
is a scientist constrained in a wheelchair and characterized by a strong German accent, as
well as a definite inclination towards carrying out a nuclear first strike upon the USSR. This
figure, they say, was inspired by some of John von Neumann’s traits, mixed up with some
others belonging to Edward Teller. The two men actually had a few important things in com-
mon, in particular the fact of both being (i) Hungarian-born scientists, (ii) involved in the US
programme for the development of nuclear weapons that started during World War II with
the Manhattan Project, and (iii) definitely anti-communist. They were both Jewish, which
suffices to reveal how misplaced is another feature of Dr Strangelove, that is, his right hand
jumping up repeatedly and uncontrollably in the Nazi salute. This, in the movie, qualifies
our doctor as a Nazi scientist arguably brought to the USA by OSS (that later became the
Central Intelligence Agency) and most likely involved in the armaments race engaged with
the Soviet Union. Well, this character cannot really fit the portrait of John von Neumann,
except for the fact that the latter was constrained for years in a wheelchair by the cancer
that eventually killed him.3 He was born Janos Neumann in 1903 in the Hapsburg Empire.
His father, a banker in Vienna, was made a Knight of the Empire by Emperor Franz Josef in
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1913, whereby the noble prefix. Already a gigantic figure for his extraordinary achievements
in pure and applied mathematics and in physics,4 he was convinced by Oskar Morgenstern,
an Austrian economist, to leave Europe and reach Princeton in 1930, joining the Institute
of Advanced Studies that had been created to host a large number of illustrious scientists
who were abandoning the old continent in those years (among them, Albert Einstein, Enrico
Fermi and Kurt Gödel, to mention only a few). As an economist, Morgenstern had intuitively
understood the potential associated with the newborn game theory and strived to convince a
comparatively reluctant von Neumann to join their resources into a venture that ultimately
yielded Theory of Games and Economic Behavior towards the end of the war.5 However,
after the publication of the book, the attention of von Neumann was driven away from devel-
oping game theory any further. In this respect, he confined himself to a series of regular
seminars at the Institute, being more than busy on several other fronts unrelated to the social
sciences.

His seminars, and the lack of a solution concept for variable-sum games, attracted John
Nash to Princeton. In 1949, Nash, a young graduate from Carnegie Mellon, started working
on his doctoral dissertation under the supervision of Albert Tucker. Unlike what is repre-
sented in the movie A Beautiful Mind,6 Princeton was the place for game theory at the time,
with many smart young mathematicians of the same calibre as John Nash putting their best
efforts into the development of the theory.

One beautiful day, Nash stepped into the office of von Neumann with a piece of paper
containing what we know now as

• the Nash equilibrium (Nash, 1950a, 1951). This solution concept can be used to solve
any zero- or non-zero-sum non-cooperative game and is de facto a generalization of
von Neumann’s minimax equilibrium.

Von Neumann reacted without much enthusiasm, saying that Nash’s theorem was noth-
ing more than a straightforward application of the fixed-point theorem (Brouwer, 1910;
Kakutani, 1941). Notwithstanding that, being subsequently encouraged by Tucker and
others, Nash got his result quickly published.7

Nash decided to go straight to von Neumann’s room because Tucker was not in Princeton,
but somewhere else. Where? At RAND Corporation, located in Santa Monica, California.
This reference to RAND is not purely anecdotal, since this institution has played a crucial
role in our story. I will come back to this point below.

Over the last decades, a lively debate has taken place about the existence and identity
of forerunners of the Nash equilibrium concept. Perhaps I should immediately spell out
my personal opinion, as I believe this issue is not soundly posed. Leonard (1994), with
the aim of showing that Nash cannot be nested into a parental line that goes ultimately
back to Cournot (1838), argues against Aumann’s position (Aumann, 1985), according to
which the Nash equilibrium concept had always existed in the economic literature, and all
that Nash has done is nothing but shaping it into its final and most general formulation.
As I see it, Aumann never literally meant to single out Cournot as a forerunner of Nash.
Rather, Aumann may have taken the Platonic view (which, by the way, is common to many
mathematicians), maintaining that mathematical concepts have a life of their own and from
time to time some researchers attain them in a more or less accurate and general form. Nash
would be a representative example of the first type, while Cournot, Edgeworth and others are
examples of the second type.
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Be that as it may, over the years it rapidly became clear to the profession that a game could
produce a plethora of Nash equilibria. This gave rise to an intensive research effort aimed at
defining the so-called refinements of the Nash equilibrium concept, such as trembling hand
perfection and iterated dominance. To the aim of the present chapter, it will suffice to draw
the reader’s attention to one such refinement:

• the subgame perfect equilibrium by backward induction (Selten, 1965, 1975). The con-
cept of subgame perfection (or perfectness) allows one to eliminate Nash equilibria based
upon non-credible strategies in non-cooperative multistage games characterized by per-
fect information, and it is probably the most widely used equilibrium concept in the
current game-theoretic literature in the social sciences. The subgame perfect solution by
backward induction is closely associated with the extensive form representation of games
also known as the Kuhn tree (Kuhn, 1953). Hence, one could succinctly say that

Zermelo + Nash + Khun = Selten

All of the aforementioned solution concepts apply to non-cooperative (possibly multi-
stage) games characterized by complete information (no matter whether it is perfect or
not). The next step deals instead with the issue of solving non-cooperative games under
incomplete information, performed via

• the Bayes–Nash perfect equilibrium (Harsanyi, 1967/68). This solution concept applies to
games of incomplete information, showing that they can be treated as games of complete
but imperfect information.

A further development, which mainly relies upon the concept of subgame perfection by
backward induction, concerns the analysis of repeated games (or supergames), where the
constituent game is a prisoners’ dilemma affected by a free-riding incentive that, in the one-
shot case, induces the emergence of a Pareto-inefficient Nash equilibrium in (at least weakly)
dominant strategies. The main result of this particular stream of research is known as

• the folk theorem, a label accounting for the fact that it is unclear who coined it first –
although Robert Aumann is an obvious candidate. The earliest formulation of it made use
of the infinite reversion to minimax strategies as a deterrence against deviations from the
collusive path. The first folk theorem in written form is Friedman’s (1971), using the Nash
reversion, with many follow-ups refining the theorem itself (see Axelrod, 1981; Abreu,
1986; Fudenberg and Maskin, 1986, inter alia) through the introduction of (optimal)
punishments that are more severe than the Nash behaviour.

So much about non-cooperative games. What if, instead, players can rely on binding –
or enforceable – agreements? What if they realize that they can improve upon the non-
cooperative outcome through successful negotiations based upon credible and commonly
accepted instruments? Parallel to (and intertwined with) the development of non-cooperative
game theory, the areas of cooperative and bargaining games were also building up a frame-
work of their own. A remarkable aspect of this side of game theory is that John Nash, via the
so-called Nash programme, introduced the idea that cooperative games could be treated as
a special case of non-cooperative ones (Nash, 1951). Nash’s hint ultimately flourished into
the fundamental contributions of Harsanyi and Selten (1972) and Rubinstein (1982), and
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also led the profession to consider the possibility of generating quasi-cooperative outcomes
through the implicitly collusive behaviour based upon the repetition of a given constituent
game, which takes us to the aforementioned folk theorem.

The first solution concept for cooperative games is the core, whose earliest (although
perhaps somewhat implicit) use can be found in Edgeworth (1881), while its formalization
has been performed by Luce and Raiffa (1957) and Gillies (1959). A refined version, already
present in the literature before the latter works, is the concept of stable set by von Neumann
and Morgenstern (1944). The cornerstone of cooperative game theory – if one should name a
single instrument – is most probably the Shapley value (Shapley, 1953), while the backbone
of bargaining games – where agents are supposed to negotiate gains against what they can
non-cooperatively attain under disagreement – is provided by the Nash bargaining solution
(Nash, 1950b) and the Kalai–Smorodinsky solution (Kalai and Smorodinsky, 1975).

This brief and intentionally incomplete overview summarizes the official history of the
development of game theory in terms of its toolkit.8 What can we say about the unraveling
of applications? Was there a Trojan horse that facilitated the adoption of game theory as a
dominant and widespread method of analysis in the social sciences?

1.2 Hidden truths?

I don’t think the intelligence reports are all that hot.
Some days I get more out of the New York Times.

John F. Kennedy

The commonly accepted view holds that game theory was first adopted by industrial eco-
nomics in the second half of the 1970s, to become later the standard method in virtually any
areas of economics. This interpretation seems to be confirmed by the casual observation of
the increasing portion of game-theoretic research appearing in all economic journals during
the last forty years or so. According to the same view, game theory entered the neighbouring
social sciences (in particular, political science) only after having acquired a rock-solid posi-
tion within economics. Hence, a widespread opinion among economists is that we may claim
some sort of priority or merit for the adoption of game theory and the resulting conceptual
‘revolution’.

The essential question is: Why did it take us so long to start using game theory extensively
after the publication of Nash’s main works in the early 1950s? After all, a quarter of a century
is a long time. Relatedly, why did game theory start to percolate into economics via industrial
economics, instead of some other sub-discipline?

The acquired wisdom, in this respect, is that in those years the best minds in mathematical
economics had turned their attention to the construction of something economics had been
wanting for a long time, namely, the theory of general equilibrium à la Arrow and Debreu
(1954).9 This is one of the greatest achievements, perhaps the greatest one, in the entire field
of microeconomics. Certainly, it is the most elegant model that we have ever built up. Yet, it
has very little, if any, practical purpose, as it describes a ‘Paradise Lost’ where all markets
are perfectly competitive and prices are equal to marginal costs everywhere. It is, of course,
a benchmark against which we may comparatively assess the inefficiency of real-world mar-
kets and use this information to design regulatory measures, though it remains hopelessly
far away from reality. But still, the idea that the efforts to build general equilibrium the-
ory absorbed resources that otherwise could have been used to accelerate the adoption of
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game theory should be considered with caution, since game theory itself rapidly found fer-
tile applications in the field of general equilibrium theory (see Shubik, 1959; Aumann, 1964;
Gabszewicz and Vial, 1972).

An alternative and complementary explanation can be found in Martin (1993, 2002, 2004),
which interprets the entry of game theory into industrial economics as a reaction of part of
this discipline to the Chicago School’s view that dominated the 1950s and 1960s, accord-
ing to which ‘two is enough for competition’. This sounds pretty much like ‘it takes two to
tango’, but the first impression may not be correct. Let me clarify this point. Consider a mar-
ket with a very small number of firms, say, just two. If (and this is a crucial ‘if’) they supply
similar goods and are extremely aggressive, the resulting degree of market competition will
drive prices down, very close to marginal cost. As we shall see in Chapter 4, where I will
come back extensively to this problem, this situation can be very productively analysed as a
non-cooperative game. Here, I will confine myself to saying that, in the 1950s, this informal
argument was used to convey the message that intensive regulation was not an issue and the
State should have kept itself off the market, as the latter possessed a workable self-regulating
device. Refusing this position, other industrial economists started using game theory to pro-
duce robust arguments against the Chicago view – one intuitive example being the harmful
cartel behaviour that the same two firms could decide to turn to as soon as they realize that
price wars ultimately destroy the profits of both. These facts triggered a process that is still
ongoing and ended up involving also politics, sociology, psychology, etc.

Well, judging from the information that surfaces from the mainstream economic literature
and a casual observation of what happened in the other social sciences over the past 30 years,
this may look like a plausible reconstruction, but what I am about to tell you will uncover a
different plot that has largely (and long) remained behind the curtains.

As mentioned above, Tucker was not in Princeton when the young John Nash came up
with a new notion of equilibrium for non-cooperative games. Nash’s supervisor was at
RAND Corporation, a think-tank created after the end of World War II with conspicuous
resources previously allocated to finance the continuation of the conflict with Japan. The
idea of investing them to create an instrument to fight the new Cold War has to be traced
back to the US Air Force (see Nasar, 1998). The source of the name given to this institution
is interesting in itself, as it is indicative of the general mood that dominated those days. Since
the research activities carried out at RAND were to be kept under cover, the name should not
transmit any compromising information. The choice of the name RAND is connected with
the fact that its original location was the R&D plant of Douglas Aircraft at Santa Monica Air-
port, where the initial Project RAND was set up in December 1945 as a special contract to
Douglas Aircraft. In 1947, RAND moved from the Douglas plant at Santa Monica Airport to
offices in downtown Santa Monica. In May 1948, RAND was transformed into a non-profit
corporation under the laws of California. As has very often been the case, the US Navy had
to have an analogous toy of its own. To satisfy this need, the Office of Naval Research (ONR,
Monterey, California) was founded in 1946 as an independent (non-profit) research centre,
also connected with the analysis of the Cold War.10

The two institutions rapidly attracted many among the best researchers from all fields
(mathematics, statistics, physics, engineering and the social sciences), who were hosted there
to stimulate them to find a way to win the Cold War, or, had it become hot, a conventional and
nuclear confrontation with the USSR. A succinct and sharp account of how those working at
RAND and ONR were perceiving their duty and the rationale sustaining it clearly emerges
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from the words of Isaacs (1965, p. v):

Then under the auspices of the US Air Force, RAND was concerned largely with
military problems and, to us there, this syllogism seemed incontrovertible:

1 Game theory is the analysis of conflict.
2 Conflict analysis is the means of warfare planning.
3 Therefore game theory is the means of warfare planning.

On the one hand, the stimulus administered by the military provided that extraordinary
sample of top-notch researchers at RAND and ONR with the appropriate incentives to put
their best efforts into this venture, and this indeed yielded astonishing results. On the other
hand, however, obvious secrecy requirements prevented many results from circulating freely
in the international scientific community for decades, and also implied funny consequences
on the perception of what exactly was the real nature of most of the (comparatively few)
results that did reach the outer world. In this regard, two games can be taken as illustrative
examples.

The first game is the prisoners’ dilemma, which is very well known and familiar to
scholars and students across the board of social sciences and also to a wider public. This
game is a prototypical strip-down model commonly used to introduce undergraduates to the
idea that Nash equilibria are very often inefficient outcomes. The structure of the prisoners’
dilemma was conceived and carried out experimentally by Merrill Flood and Melvin Dresher
in January 1950 at RAND Corporation (Flood, 1952, 1958). According to the official records
of the time, the game became famous under that name when, shortly after, Albert Tucker was
invited to deliver a lecture on the nature and scope of game theory to a non-technical audi-
ence at a meeting in Stanford (see Nasar, 1998 and Mirowski, 2002). Of course, it was not
a matter of understanding whether either prisoner (or both) might be driven to confess their
crimes to a district attorney being worried about the lack of hard evidence. Rather, the real
objective of the game was the analysis of escalation in arms races, but nobody was allowed
to go public and tell the bare truth about it.

An even more intriguing case is that of a game that most people may not have ever
heard of. It’s traditionally known as the pursuit-evasion game, and its relevance goes well
beyond the fact that it shares with the prisoners’ dilemma a similar history and fate. Just
like the prisoners’ dilemma, this game also has a label that has been designed to hide its
real nature. To this regard, let me tell you quickly what my personal experience with it has
been. When I was a young PhD student in the early 1990s, I came across the theory of
dynamic games. These are games where the role of time and time discounting is explic-
itly accounted for. Typical applications include the analysis of firms’ investments in R&D
and productive capacity accumulation, the exploitation of exhaustible natural resources, the
environmental effects of productive activities, and so on. Being attracted by what later would
become my main field of research, I started reading avidly everything about dynamic games,
and very quickly realized that a leitmotiv of that literature was a strange problem called
the pursuit-evasion game, with entire chapters of dominant textbooks being devoted to its
illustration.11

This game is a dynamic set-up illustrating the strategic interaction taking place between
a thief (τ ) and a policeman (p) who is trying to catch him. In its simplest formulation, the
game unravels over a finite time horizon ending, say, at some instant T (known a priori to
both players). The outcome is as follows. If the policeman does not reach the thief before
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Figure 1.1 The pursuit-evasion game

the terminal date, that is, at any instant t < T , then the thief escapes and ultimately wins.
In the opposite case, the policeman wins. The two alternative situations are illustrated in
Figure 1.1, where time t ∈ [0, T ] is measured along the horizontal axis while a simplified
one-dimensional space is measured on the vertical axis, and the trajectory followed by the
policeman may or may not intersect that of the thief. The early sources12 treating the pursuit-
evasion game never revealed explicitly what the story was really about. As I finally came to
understand later on, the subject matter of the game is the design of optimal strategies in a
game where the thief is indeed a hostile intruder (e.g., an enemy aircraft or missile), possibly
armed with nuclear weapons, while the policeman is the air defence of a country being
attacked. Given that the intruder will reach and destroy its objective (say, the policeman’s
capital city) at time T , the air defence must necessarily intercept it strictly before doomsday,
at any t < T .

Appearing under the shorter label of ‘pursuit game’ according to the records (cf. Breitner,
2002, p. 116), this story appeared for the first time in the RAND discussion paper P-257
written by Isaacs (1951). The pursuit-evasion game is a differential game. In summary, dif-
ferential game theory can be viewed as a spin-off of optimal control theory, describing the
dynamic behaviour of agents (or objects) in continuous-time models. As such, it is more
familiar to mathematicians and control engineers than to social scientists, although its rel-
evance for the social sciences should be self-evident. Its development rapidly became a
primary activity at RAND and ONR in order to produce sophisticated instruments for the
analysis of conflict situations. The same was happening also on the other side of the Iron
Curtain, in the Urals, where the research in this field was driven by mathematicians like
Pontryagin, Boltyanskii, Gamkrelidze, Mishchenko and many others. Secrecy, and the tough
competition characterizing scientific progress during the Cold War, led to parallel work and
analogous discoveries on both sides, as became clear when, with great delay, their respec-
tive achievements were officially published (Isaacs, 1973 and Pontryagin, 1966).13 These,
although altogether unrelated to ‘little green men’ or ‘bug-eyed monsters’ from outer space,
might well be called the X-Files.
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Somewhat paradoxically, the instruments of dynamic analysis have been (and largely con-
tinue to be) more familiar to macroeconomists than microeconomists or all those using the
game-theoretic tools. This is confirmed by the trivial observation that the dominant models
in economic growth theory (Ramsey, 1928; Solow, 1956; Swan, 1956) are much older than
any publicly accessible illustrations or applications of differential game theory.

Overall, my view is that the above considerations suffice to prove two reciprocally con-
nected facts. The first is that a generic intention of investigating economic and social issues
in a broad sense is not the best candidate as the driving force behind the construction of
game theory. Rather, this stream of research was motivated by the need to deal with prob-
lems specifically related to the Cold War and international relations. While it is certainly
true to a certain extent that some of the researchers involved in the venture had in mind
social as well as economic problems (and John Nash is certainly an example of this kind),
one cannot underestimate the strength of the impulse exerted by military applications on the
development of both static and differential game theory. The second fact is that the acquired
interpretation shared by the vast majority of those who deal in various degrees with game
theory and its applications is, in a sense, completely mistaken. That is, when reading about
game theory at any level, it is very often the case that one is left totally unaware of the true
genesis of the discipline, and is led to believe that the first and by a large distance – thus far –
also the widest field of application has been economics.

Further reading

For more on the genesis and development of game theory, see the special issue of History of
Political Economy on game theory (Weintraub, 1992) and Leonard (1994, 1995). A thought-
ful insight into the scope and aims of game theory can be found in Aumann (1985, 1999).
Interesting appraisals of the achievements of game theory are offered by van Damme and
Weibull (1995) and Myerson (1999). An unconventional and intriguing view of game theory
(and mathematical economics in general) is that of Mirowski (2002). For a more informal but
very entertaining treatment of the matter, I refer the interested reader to Poundstone (1992),
Nasar (1998) and Siegfried (2006).
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2 What is a game?

Life, friends, is boring. We must not say so.
After all, the sky flashes, the great sea yearns,
we ourselves flash and yearn,
and moreover my mother told me as a boy
(repeatingly) ‘Ever to confess you’re bored
means you have no
Inner Resources.’

John Berryman,
Life, friends, is boring. We must not say so.

A game is a mathematical instrument that serves the purpose of formalizing strategic inter-
actions among agents, the latter being not necessarily single individuals – indeed, we
will examine games where players are households, firms, public institutions, nations, etc.
Uncountably many social, economic and political situations, more or less familiar to all
of us, are characterized by the interplay among actors with either converging or (possibly
more often) conflicting interests. This prevents them from attaining what a neutral external
observer would consider as their common interest.

This chapter offers a glance at the basic elements of game theory, in order to define what
is the object – a ‘game’ – of our interest here, and what exactly one must make sure to
know in order to properly construct any given game. As you can imagine, this may quickly
become a distasteful overload of obscure mathematical formulas and incomprehensible def-
initions, with predictably negative effects on your willingness to read on. I will do my best
to avoid this unpleasant practice and its disgraceful consequence. Two examples, which I
preliminarily illustrate without going into any technical details – whose exact nature will be
investigated in the remainder of the chapter – precisely because I want to focus on purely
intuitive aspects, will help to clarify the basics of the subject matter.

The first example is familiar to most students around the world.1 Let’s say that two Italian
undergraduates, called 1 and 2, are enjoying a term at a British university thanks to some
Erasmus exchange agreement. They share a little flat with a nice living room whose bow
window yields a lovely view over the meadows surrounding the university campus. However,
the landlord has not equipped the flat with a TV set, and our two youngsters are discussing
the possibility of buying one from a local dealer. They would like a TV set priced at £200,
and each of the young men evaluates the perspective of watching television comfortably
at home as k. Now suppose that k is higher than £100 – that is, higher than 50 per cent
of the price – and each student’s available budget is £200. Under these conditions, each of
them could individually decide to buy the TV – however, he could not prevent the other



March 1, 2011 13:27 Pinched Crown A Page-12 GTSS_Chapters

12 What is a game?

Matrix 2.1 Buying the TV is a challenging venture . . .

Student 2
g ng

Student 1 g k + 100; k + 100 k; k + 200
ng k + 200; k 200;200

from watching it once it is in the living room; and collective fruition has no reflections at
all on the individual fruition by either one.2 Additionally, it would be wise and convenient
to share the cost evenly, thereby getting the TV and saving £100 per head. The two students
are following courses in two different faculties, say, engineering and medicine. The students
order the TV set on the phone, and the night before the day they are supposed to go and buy
it, they establish that they will meet inside the shop in the late afternoon, on the way home
from their respective faculties. Now, if both of them do show up at the shop, each of them
will pay £100, while if only one goes to the shop while the other doesn’t, the former will
have to pay the full price. It’s easy to verify that if 100 ≤ k < 200 neither of them will show
up, and no TV set will ever show up in their living room. The reason for this mishap can be
outlined by looking at Matrix 2.1, where g and ng stand for to go and not to go to the shop,
respectively.

Since k + 200 > k + 100, if student 2 goes to the shop, the best thing for student 1 to do
is to go home and wait for 2 to come back with the TV. Otherwise, if 2 goes home, the best
choice that 1 can take depends on how much he likes watching the TV, against the alternative
of saving £200. Indeed, if 200≤k <300, 1 will opt to save £200. By symmetry, student 2 will
get to the same conclusion. Accordingly, if 100 ≤ k < 200, the best strategy is to step back
and wait for the other to come back home with the TV. As a consequence of this reasoning,
neither one nor the other will go to the shop, and they will sit comfortably in the living room,
but without TV.

The second example deals with the sketch of an arms race, which was a striking feature of
international relations between the USA and the USSR during the Cold War. In this game,
the players are two countries that have to decide whether or not to build up nuclear weapons.
In principle, both would agree that a world free of nuclear weapons is much better than one
where nuclear weapons appear by the thousands here and there like as many mushrooms.
Yet, as for Hamlet, the question haunting their dreams symmetrically is: If my adversary is
building up its nuclear capability, why shouldn’t I do the same? Being peaceful – or, at least,
non-aggressive – may not be so smart a strategy in a world where hegemony and bargaining
power are the direct product of the number of ballistic missiles one can deploy at any given
instant, right? This problem is portrayed in Matrix 2.2, where strategies m and nm stand for
missiles and no missiles, respectively.

The numbers appearing in the matrix measure the values attached by the two countries
to each of the four possible situations. Of course, I have chosen these numerical values
arbitrarily, but not so arbitrarily as it may seem at first sight. They have been picked in such

Matrix 2.2 . . . but an arms race is even
worse

Country 2
m nm

Country 1 m 10;10 200;0
nm 0;200 100;100
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a way to reflect more or less correctly the attitude of the nuclear powers during the period
stretching from the end of World War II to the late 1980s. So, the message conveyed by the
above matrix is that everybody shares the view that a world without missiles is definitely
preferable to any other alternative, and yet having no missiles is somewhat embarrassing if
the counterpart has built an arsenal for itself. Since 10>0 and 200>100, both countries will
strive to build up their own ballistic missiles, as this emerges as the most convenient strategy
irrespective of the rival’s behaviour.

These two simple stories may seem quite unrelated to each other, in terms of their respec-
tive subjects. However, they share the same underlying nature, and produce analogous
outcomes. Namely, in both games, the players are fully aware that there is an obviously
optimal outcome (splitting evenly the cost of a TV set, or a pleasant world without nuclear
weapons). However, because of strategic interplay (and the ‘logic’ driving it), the outcome
we may expect to observe (and, in the second case, we did observe) is far worse. In both
cases, I have reconstructed the likely unravelling of events under the assumption (implicit,
thus far) that agents adopt quite selfish attitudes. Of course, one could consider the alterna-
tive perspective in which agents are altruistic by nature, and therefore keen on cooperating
towards the attainment of the common good. It goes without saying that this, desirable as it
may be, is not generally the case. This distinction, based on the players’ attitude, is a sort of
iron curtain separating two worlds: one in which players are selfish, the other in which they
are altruistic. Most of the book deals with the first (but the last chapter is entirely devoted to
the second).

These preliminary observations suggest the presence of some recurrent features repeating
themselves unchanged across several different situations belonging to many areas of our
life. Formalizing these problems as games is a way of capturing this common architecture
without being driven off course by specific (and more often than not, irrelevant) details.

The first step in this direction consists in understanding what is meant by ‘game’ in applied
mathematics. Admittedly, as I have said at the outset, going through a list of definitions and
formal concepts is a prerequisite that may deter you from going any further. If the present
one were a standard textbook in game theory, I might agree with you – at least to some
extent. But I’m warmly inviting you to proceed with confidence.

2.1 The structure of a game
In order to properly define any given game (and consequently understand what it is about),
one has to know the following three essential pieces of information, which jointly define the
so-called structure of the game.

• The full list of the players’ identities, which, in principle, might be just a list
N ={1,2,3, . . . ,n}.

• The full list of actions or strategies3 Si that every player can choose in the game:

Si ={si1, si2, si3, . . . , sik} (2.1)

In this particular case, player i has k admissible strategies. If Si and N are both finite
(that is, ten or ten billion, but not infinitely many), the game at hand is said to be finite.
The order according to which player i’s strategies are listed in Si is irrelevant. What
matters is just that Si must be complete. An admissible outcome of the game is defined as

s = (s1, s2, s3, . . . , sN ) (2.2)
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which is the list of the individual actions or strategies chosen by each player
i = 1,2,3, . . . ,n corresponding to the outcome s. In this case the order does matter, as
s1 identifies the behaviour of player 1, s2 that of player 2, and so on.

• The payoff accruing to each player i corresponding to every possible outcome s of the
game. This payoff is usually indicated as πi (s) (this habit has much to do with the fact
that, in economics, the Greek letter π is commonly used to identify profits). For the sake
of clarity, it is worth stressing that the payoffs can be represented by anything that matters
to players: money, market shares, political power, hegemony, fame, rare butterflies or
stamps, vintage hi-fi items, etc. In practice, the exact nature of πi has to be defined in
relation to the player’s objective in any specific game.4

Throughout the book, I will use the term strategy to indicate a player’s behaviour. How-
ever, as long as strategies are discrete (e.g., left versus right, stop versus go), I could as well
use the term action. For future reference, it is also useful to define what is meant by a mixed
strategy. Now we know that agent i may play a pure strategy si j as long as this is admis-
sible, that is, si j must be an element of Si . Alternatively, the same player may randomize
over his/her set of pure strategies and generate a mixed strategy. What does all this mean?
To understand it, consider the simplest case where randomization may operate, i.e., suppose
player i’s admissible pure strategies are Si ={si1, si2}. He/she may attach probability p to si1
and its complement 1 − p to si2. The resulting combination of pure strategies generated by
these two probabilistic weights is σi = psi1 + (1 − p)si2 and is called a mixed strategy. For
instance, i may declare (for some reasons that I will not illustrate here) that he/she will set
p= 1 − p= 1/2, or equivalently that each pure strategy will be selected with the same prob-
ability. To help intuition, one may think of mixed strategies as lotteries constructed on pure
ones, with the caveat that, while in real-world lotteries probabilities are exogenous to each
single agent, here the agent assigns probability endogenously to each pure strategy. How to
work with mixed strategies (and why one should do it) is one of the arguments discussed in
Chapter 3.

2.2 A brief taxonomy of games
Our next task is to classify the different types of games according to four commonly accepted
typologies. To begin with, we can separate cooperative from non-cooperative games. In a
cooperative game, players are supposed to pursue a common objective, summarized by a
common payoff; on the contrary, a non-cooperative game is one in which each player is
assumed to adopt a strictly self-interested behaviour, in open conflict with all other players
involved in the same game.

The second classification separates constant-sum or zero-sum games from variable-sum
games. In the former type, the overall sum of payoffs accruing to all players is constant
irrespective of their behaviour, in such a way that, whatever a player may gain, he does so
at the expenses of at least one of the others. Hence, constant-sum games fully embody the
spirit of the Latin (and, later, Hobbesian) tag homo homini lupus. Or, equivalently, players
know that they have to split a pie whose size is given and unmodifiable endogenously. For
this very reason, constant-sum games are often referred to as strictly competitive. Instead, in
a variable-sum game, the size of the pie to be split among players does depend endogenously
on their behaviour. Hence, although it remains true that every player is in conflict with all
others, any gain for an individual does not necessarily entail a loss for at least one other.
To eliminate any residual doubts: while a game between two nuclear powers trying to split
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the globe into two areas of influence might be taken to be (but, beware, not necessarily is) a
constant-sum game, competition between, say, DrinkThis and TasteThat is surely not, since
each firm’s profits, as well as their sum, do depend on strategies involving prices, marketing
techniques, advertising campaigns, etc.

The third classification relies on the nature and amount of information available to each
player when the latter has to select a strategy or action. In this respect, three different
taxonomies can be adopted.

• A game is one of perfect information if every player, when choosing a strategy, knows
the entire past history of the game up to that moment. Spelled out in these terms, the
definition of perfect information seems intuitively clear, but it’s indeed a bit tricky. Why?
Because most of the games we will examine in the remainder of the book are in fact
one-shot games, i.e., situations where strategic interaction takes place once and for all,
without past or future developments, and calendar time doesn’t play any role in them.
Accordingly, it’s not necessarily clear what is meant by ‘past history’. An alternative (and
perhaps more intuitive) definition is the following: information is perfect if a player, when
adopting a strategy among those allowed to him in the game, knows the strategies adopted
by rivals. If this is not the case for at least one player, then the game under consideration
is characterized by imperfect information (note that one player, or several players, may
move before or after the rest of the players involved in the game, while the latter move
simultaneously).

• A game is one of complete information if each player knows its structure, that is, the
list (or the identities) of all players, the admissible strategies Si for all of them, and their
respective payoffs πi corresponding to every admissible outcome. If this is not true for at
least one of them, then the game is characterized by incomplete information.

• Finally, a game is one of symmetric information if all players have exactly the same
amount of information relevant to the solution of the game. Again, if this is not true,
the game will be affected by asymmetric information.

It is worth stressing that, more often than not, asymmetry and incompleteness will indeed
overlap, so that a game with incomplete information may frequently be one of asymmetric
information as well. For instance, if DrinkThis knows the technology (and therefore the cost
structure) of TasteThat, while the converse is not true, then the game between DrinkThis
and TasteThat will surely feature asymmetric information, but this will go hand in hand with
incomplete information because TasteThat will be unable to tell exactly what price strategies
can be implemented by DrinkThis, as the latter’s costs are unknown to TasteThat. To stick
with this example dealing with the soft drinks industry, a game with purely incomplete (but
symmetric) information is one where, for instance, DrinkThis and TasteThat know that there
may be a shock on demand due to affect their profits, but neither firm knows whether the
shock will occur, and if so, whether tomorrow, or next week, or next year. In a situation like
this, both firms know exactly the same things, but they cannot foresee precisely what pattern
that market demand is going to follow in the near future. Intuitively, the aforementioned
typologies can be mixed up in any possible order, giving rise to games where information
is imperfect but both symmetric and complete, or perfect, symmetric and incomplete, or
anything else.

The last classification of games has to do with the role of time. In this respect, there
exist two types of games: one-shot games on one side, and repeated games or supergames
on the other. In the first case, the game is played one-off: players meet just once, there is
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neither past nor future, and therefore time plays no part in the story. In the second case,
the constituent game (something like Matrices 2.1 and 2.2) repeats an arbitrary number of
times, even infinitely many times. As we shall see in Chapter 5, time matters, so much so that
repetition may indeed modify dramatically the outcome of a game. For the moment, I will
confine my attention to one-shot games.

2.3 Alternative representations
On the basis of the notions listed in Section 2.1, we may define a generic game G in what is
usually called the normal form G ≡ 〈N , Si ,πi (s)〉. This synthetic representation of a game
captures the idea that the game itself is well defined if its structure is known. However,
this way of describing the essential features of games is somewhat less than intuitive, and
I will use it only when strictly necessary to spell out theorems or definitions. Fortunately
enough, this will not happen often in the book, as there are alternative – and more friendly –
methods of describing games. In fact, there are two standard – but not equivalent – ways
of visualizing a game: the strategic form and the extensive form. The strategic form makes
use of the threefold structure we have already encountered: the list of players N , the list
of strategies Si available to each of them, and the payoffs πi (s) delivered to each of them
corresponding to every admissible outcome s. Using these elements we may build up the
matrix of a game. Matrix 2.3 gives a generic example of a 2 × 2 game, i.e., one in which
there are two players, 1 and 2, each endowed with two strategies, (si1, si2).

Conventionally, in every cell of the matrix, I indicate first the payoff of the row player
(agent 1), then that of the column player (agent 2). The extensive form representation is also
known as the game tree, and dates back to Kuhn (1953).5 Figure 2.1 portrays the tree of the
game represented in strategic form in Matrix 2.3. In fact, it is one specific tree out of the
possible representations of the same game in extensive form.

From top to bottom, the game tree departs from an initial node, called the root of the
game, where player 1 picks either s11 or s12, represented as separate branches leading to
the intermediate nodes where player 2 has to decide what to choose, either strategy s21 or
strategy s22. The presence of a connection between the two intermediate nodes pertaining
to agent 2 conventionally reveals that the game takes place under imperfect information.
This amounts to saying that, when choosing a strategy, player 2 has no idea of the node in
which player 1 has driven the game, because moves are simultaneous. If the intermediate
nodes were disconnected, the game is one of perfect information, and player 2 knows which
nodes he/she is in. That is, player 2 has observed the choice made by player 1 at the root,
as the game is being played sequentially. In such a case, each of the intermediate nodes is
called a singleton. At the base of the tree, there should appear a set of terminal nodes (in
this case, four), where payoffs πi (s) pop up and are delivered to players corresponding to
every admissible outcome. Usually, the explicit representation of terminal nodes is omitted,
as in this case. However, terminal nodes are indeed important insofar as they identify every
possible outcome of the game, as cells do in the matrix form. For instance, the first terminal

Matrix 2.3

2
s21 s22

1 s11 π1(s11, s21);π2(s11, s21) π1(s11, s22);π2(s11, s22)
s12 π1(s12, s21);π2(s12, s21) π1(s12, s22);π2(s12, s22)
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1

2

s11 s12

s21 s22 s21 s22

π1(s11, s21)

π2(s11, s21)

π1(s11, s22)

π2(s11, s22)

π1(s12, s21)

π2(s12, s21)

π1(s12, s22)

π2(s12, s22)

Figure 2.1 Extensive form of a 2 × 2 game with imperfect information

node on the left-hand side at the bottom of the tree identifies the outcome (s11, s21), with
player 1 choosing to go left at the root and player 2 going left at the intermediate node. For
later reference, it is the case of specifying that, when looking at extensive form games, the
behaviour of players (that is, the list of strategies they play) is referred to as a strategy profile.

If the intermediate nodes are singletons, the subset of the game tree departing from each
singleton constitutes a proper subgame of the entire game. A proper subgame must depart
from a singleton differing from the root, and contains everything from that singleton all the
way down to the terminal nodes that can be reached from that singleton itself. Of course,
each game has an improper subgame that coincides with the entire game departing from the
initial node, the latter obviously being a singleton by definition. In the example represented
in Figure 2.1 this is indeed the case, as intermediate nodes are connected. Note that the
imperfect information game illustrated in Matrix 2.3 and Figure 2.1 admits an alternative and
fully equivalent extensive form representation that obtains simply by switching the relative
positions of players, putting 2 at the root and 1 at the intermediate nodes. This holds true
precisely because of simultaneous moves, whereby it doesn’t really matter where a player
appears along the game tree.

Conversely, under perfect information – or, sequential moves – the relative positions of
players along the tree makes a lot of difference, as changing the order of moves entails
looking at entirely different games, generating potentially diverging stories. The alternative
games portrayed in Figures 2.2 and 2.3 are indeed two different games.

In Figure 2.2, player 2 has perfect information as he/she observes the strategy cho-
sen by player 1 at the root. In Figure 2.3, the opposite holds, with player 2 moving first
and player 1 endowed with perfect information corresponding to disconnected intermediate
nodes. Observe that, conventionally, the payoffs are always listed in the same order (starting
with player 1’s) at each terminal node, irrespective of the order of moves.

Let’s sum up what we have seen so far. A game of which we know the strategic form can
also be outlined graphically as a tree, but the same matrix can generate several different (and
not necessarily equivalent) trees, depending on the nature of the information players benefit
from (or, whether moves are simultaneous or sequential). If information is perfect, then the
player moving second observes the behaviour of the first mover and can choose a strategy
accordingly. To anticipate some of the aspects that I will deal with when illustrating specific
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1

2

s11 s12

s21 s22 s21 s22

π1(s11, s21)

π2(s11, s21)

π1(s12, s21)

π2(s12, s21)

π1(s12, s22)

π2(s12, s22)

π1(s11, s22)

π2(s11, s22)

Figure 2.2 Extensive form of a 2 × 2 game with perfect information for player 2

2

1

s11 s12

s21 s22 s21 s22

π1(s11, s21)

π2(s11, s21)

π1(s12, s21)

π2(s12, s21)

π1(s12, s22)

π2(s12, s22)

π1(s11, s22)

π2(s11, s22)

Figure 2.3 Extensive form of a 2 × 2 game with perfect information for player 1

games in extensive form in the remainder of the book, it is worth noting that the presence
of perfect information (or sequential play) has two possible implications. The first is that,
by moving first, the player located at the root may drive the development of the game in the
desired direction, anticipating the reaction of the second mover. This is usually referred to
as the first-mover advantage. The second implication is that playing second may in itself be
not so bad, as it allows the second player to observe the rival’s move and then decide what to
do, possibly to the first player’s disadvantage. As we shall verify throughout the following
chapters, both possibilities may alternatively materialize depending on the specific features
of the game.

Recall that information is complete if players know the structure of the game. In terms of
its extensive form representation, this is equivalent to saying that, if the details of the game
tree are fully known to players, then they play under complete information.

Now note that the extensive form conveys an amount of information about the nature of
the game at hand definitely larger than the strategic (or matrix) form. Why? Because the
tree signals whether moves are simultaneous or sequential, something that one is completely
unable to infer on the basis of the strategic form, without being explicitly told so.
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This, however, comes at a price. While the correct definition of a game in strategic
form requires knowing the list of players, their respective strategy spaces and payoffs, the
definition of the same game in extensive form requires knowledge of the following:

1 the entire game tree, starting from the root and ending up with terminal nodes, specifying
the possible routes players can take all along the tree;6

2 the list of players;
3 the identity of the player that is required to move at every node;
4 the list of strategies available to each player corresponding to the node at which he/she is

expected to move;
5 the list of payoffs accruing to players at each terminal node; and
6 the exact nature of information characterizing every intermediate node – that is, one must

be able to tell whether any intermediate node is a singleton or not, and therefore also
whether the game exhibits any proper subgames or not.

Having said all this, we are now in a position to proceed to the next issue, which is how to
solve a game: the equilibrium concepts. The exposition will be confined to non-cooperative
games.

Further reading

The material contained in this chapter can be further investigated by consulting several text-
books in game theory, at different levels of formal complexity. At an intermediate level, see
Gibbons (1992), Dutta (1999) and Osborne (2003). At a slightly higher level, see Montet
and Serra (2003) and Rasmusen (2006). Finally, for classical reference books but at a some-
what advanced level, see Fudenberg and Tirole (1991), Binmore (1992), Myerson (1991)
and Osborne and Rubinstein (1994).
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The ball I threw while playing in the park
Has not yet reached the ground

Dylan Thomas,
Should lanterns shine

Being acquainted with the notions of game structure and information, we are now in a
position to make a crucial step, which consists in identifying the solution concepts for non-
cooperative games. These are usually defined as equilibrium concepts, or simply equilibria.
What do we mean here (i.e., in the social sciences) by equilibrium? Our concept of equilib-
rium indeed reflects the corresponding concept that dominates physics. Trivially, any given
system (no matter whether it is physical, biological, economic or social) is in a state of equi-
librium if, in the absence of perturbations, it remains in its current state. With this in mind, of
course, the investigation of equilibria in economic and social systems requires the analysis
of the behaviour of agents driven by their respective incentives. What do people, parties or
countries want to attain when they behave in a specific manner? The answer to this question,
as we know from the previous chapter, is given by the payoff function assigned to each of
them. The remaining issue, then, is to figure out the criterion informing their behaviour. This
criterion is individual rationality. In game theory (or better, in the social sciences across
the board), an outcome is individually rational if it gives each agent at least as much as
his/her security level, the latter being the ‘maximin’ payoff – the maximum of all minimum
payoffs – that this player can guarantee to him/herself irrespective of what the other agents
do. But this is usually not enough. That is to say, what game theory assumes is that each
player will rationally choose a strategy in order to pursue the maximization of his/her payoff,
being aware of the relevant solution concept for the game being played, and the structure of
the game itself. This leads to another crucial assumption, that of common knowledge across
agents. This establishes that each player must be fully aware of the rules of the game, the
nature of information in the game, and the game structure (including thus also the objectives
of all other players); but this is not enough, as each player must know that every other player
knows the same things, as well as that each player knows that everybody else knows, and
so on recursively. Should the common knowledge assumption fail to apply consistently, then
the game would not be correctly specified and the resulting analysis would yield completely
unreliable predictions.1

Having said that, we may now take a full immersion into the most valuable and commonly
used equilibrium concepts, starting with the oldest one, coined by John von Neumann.
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3.1 The maximin (or minimax) equilibrium
The maximin (or minimax) equilibrium dates back to von Neumann (1928), but has been
widely adopted as a solution concept after the publication of the book by von Neumann and
Morgenstern (1944). This instrument is applicable to constant-sum games – while, as we
shall see in the remainder, it is not applicable to variable-sum ones.

How does it work? The maximin version of the solution concept can be laid out as follows.
Suppose we are looking at a two-player constant-sum game (of course, there may be more
than two players, but this is the easiest way of making ourselves acquainted with the first
solution concept we are meeting in the book). Each of them receives the following instruc-
tions: ‘Given that this is a strictly competitive game, you have to choose the best strategy
for yourself, in order to maximize the size of your slice of the pie you see in front of you,
being aware that your rival is going to behave in a completely analogous way.’ Or, equiva-
lently: ‘Given that this is a strictly competitive game, you have to choose the best strategy
for yourself, in order to maximize the size of your slice of the pie you see in front of you,
being aware that your rival is going to choose his/her strategy so as to minimize the size of
your slice.’ That is, given the constant-sum nature of the game, each player perceives the
rival’s behaviour as not only non-cooperative but indeed aggressive. Hence, each player’s
maximin strategy is chosen as a sort of insurance against the harmful consequences of the
rival’s attitude.

A bit more formally, the maximin strategy for player 1 guarantees to the latter the attain-
ment of the maximum among the minimum payoffs generated by all admissible strategies
available to 1 in the game at hand, given that player 2 is behaving in such a way so as to min-
imize 1’s maximum payoff (whereby one may adopt the alternative label, minimax). That is,
player 1 has to solve the following problem:

max
s1

min
s2

π1(s1, s2) (3.1)

while 2 is solving this:

min
s2

max
s1

π1(s1, s2) (3.2)

This, of course, is what 1 thinks that 2 is trying to do, while from the standpoint of 2
the problem is in fact to find the strategy that solves the problem maxs2 mins1 π2(s1, s2),

being convinced that 1 is trying to solve mins1 maxs2 π2(s1, s2). Intuitively, a constant-
sum game looks pretty much like a hall of mirrors. To clarify the operational meaning
of von Neumann’s equilibrium concept, we may resort to a simple example, described by
Matrix 3.1.

The sum of the payoffs (the size of the pie to be split between players) is K . Note that,
in view of the fact that we are looking at a constant-sum game, it would suffice to indicate
player 1’s payoff in each cell, as the payoff accruing to player 2 is just residually defined

Matrix 3.1 A constant-sum game

2
s21 s22

1 s11 3; K − 3 5; K − 5
s12 2; K − 2 6; K − 6
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as the complement to K . Now we may identify ourselves with the row player, agent 1, and
proceed to identify the minimum payoff for 1 along each of the two rows. This yields 3 along
the top row (if 1 plays strategy s11) and 2 along the bottom row (if he/she plays s12). Fol-
lowing the maximin instructions, 1 should select strategy s11, expecting to receive a payoff
equal to 3. Now we can mimic the behaviour of player 2, who plays aggressively against
1 in order to minimize the latter’s maximum payoff. By selecting strategy s21 (i.e., the first
column), 2 spots 3 as the maximum payoff allowed to 1; instead, if 2 chooses strategy s22

(the right column), the maximum payoff accruing to 1 is 6. The minimum between the two
maxima is 3, and therefore 2 should select s21 expecting the rival to get a payoff equal to 3.
Thus, it appears that players’ ex ante expectations are indeed ex post correct and reciprocally
compatible.

Now take the opposite perspective, where player 1 is choosing the minimax strategy
against player 2, while the latter is looking for the maximin strategy as an insurance: the
maxima for player 2 along the two rows are, respectively, K − 3 (first row, strategy s11) and
K − 2 (second row, strategy s12). Accordingly, player 1 should select strategy s11 in order to
allow player 2 to get no more than K − 3. Along the columns, the minima for player 2 are
K − 3 (first column, strategy s21) and K − 6 (second column, strategy s22). Consequently, 2
chooses s21 expecting to get K − 3. This is precisely what happens, and coincides with the
outcome of the game if considered from the previous angle.

As a useful exercise, you may solve the game assuming that both players are following
the same logic, either minimax or maximin, alternatively. This will allow you to quickly
verify that the outcome is always the same irrespective of the combination of minimax and
maximin behaviour attributed to the two players. Therefore, the outcome identified by the
strategy pair (s11, s21) is the (unique) maximin or minimax equilibrium of this game.

If applied to a variable-sum game (which is not strictly competitive), von Neumann’s
equilibrium concept is bound to produce unacceptable results, as can be seen by inspecting
the game in Matrix 3.2.

Here, maximin payoff is 3 for both players; as a consequence, 1 should play s12 while 2
should select s22. By doing so, each of them would receive a payoff equal to 10. Of course
10 is higher than 3, and therefore players should be happy about the outcome generated by
the maximin criterion.2 However, a closer look reveals a number of issues putting into ques-
tion the adoption of this equilibrium concept to solve a game like this. To begin with, the
payoff generated by strategies (s12, s22) is not the maximin payoff of either player; conse-
quently, the ex ante expectations of both players are not confirmed ex post. Moreover, how
about the outcome (s11, s21), generating the highest payoffs appearing in the whole matrix?
This is the Pareto-efficient (or Pareto-optimal)3 outcome of the game – bluntly speaking,
its happiest possible ending. Nonetheless, the criterion coined by von Neumann does not
point to that: minimax and maximin behaviour actually leads players to dwell upon (s12, s21)

and (s11, s22) because the corresponding cells contain their respective maximin payoffs, as
well as (s12, s22) because this is the outcome generated by the maximin instruction, while
(s11, s21) remains altogether outside of their conjectures. Such was the state of the art in

Matrix 3.2 A variable-sum game

2
s21 s22

1 s11 20;20 2;3
s12 3;2 10;10
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Matrix 3.3

2
s21 s22

1 s11 20;20 2;3
s12 3;11 10;10

1944. Shortly after, a crucial advancement was made, in the form of what we now call the
Nash equilibrium (Nash, 1950a, 1951).

3.1.1 The Nash equilibrium

Before looking at the Nash equilibrium concept, a preliminary step is in order. Observe
again the game in Matrix 3.2, and assume that information is complete and symmetric (for
the moment, it is immaterial whether information is perfect or imperfect, but let’s say it
is imperfect). Then, suppose player i formulates the following question: ‘Given my rival’s
behaviour, what is my best strategy?’ Or, equivalently: ‘What shall I do to maximize my
payoff, taking my opponent’s strategy as given?’ This question has two different answers,
depending upon the choice made by player j. If the latter selects s j1, then the optimal strat-
egy is si1 (because 20 > 3); otherwise it is si2 (because 10 > 2). This mechanism generates
what is labelled as player i’s best reply (to the rival’s behaviour). In the example related to
Matrix 3.2, the best reply of either player changes depending on the strategy chosen by the
opponent. This is not always the case – at least, not for all the players involved in a given
game – as can be easily seen by looking at Matrix 3.3, where player 1’s payoffs are the same
as in Matrix 3.2, while player 2’s payoff corresponding to the outcome (s12, s21) has been
appropriately modified.

Here, the best reply of the row player takes the form of the following set of instructions:
‘you should reply to s21 (respectively, s22) by playing s11 (respectively, s12)’, exactly the
same as in the previous game. However, this is not true for the column player, as he/she
realizes that s21 generates higher payoffs (i.e., is better) than s22, no matter what the row
player is doing. Accordingly, the best reply of 2 to 1 is to play s21, relying on a sort of auto-
matic pilot. Of course, in view of the assumptions of complete and symmetric information
and common knowledge, player 1 is able to reconstruct a priori this feature of the game and
therefore will expect player 2 to select s21. Accordingly, 1 may confidently play s11.

Now, keeping this discussion in the back of our minds, we may proceed to spell out the
Nash equilibrium concept. There are several equivalent ways of defining it. The first is:

• Nash equilibrium (version I) Consider a non-cooperative game characterized by imper-
fect, complete and symmetric information, with a set N of players. An admissible
outcome is a Nash equilibrium provided that no player has unilateral ex post regrets.

Let’s have a closer look at the above definition. It says that an admissible strategy combi-
nation qualifies as a Nash equilibrium if and only if there exists no incentive for any of the
players to deviate unilaterally from that outcome, taking the opponents’ strategies as given
and unmodifiable. This view of the Nash equilibrium requires that, if hypothetically each
agent were asked in isolation after having played whether he/she would like to renege and
change unilaterally the strategy just chosen, under the assumptions that the others stay put,
the answer would systematically be negative for each player involved.
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The second definition is the following:

• Nash equilibrium (version II) Consider a non-cooperative game characterized by imper-
fect, complete and symmetric information, with a set N of players. An admissible
outcome is a Nash equilibrium if the strategy of each player qualifies as his/her best reply
to the strategies selected by all the rivals.

This captures the idea that each player has to choose the strategy that maximizes his/her
payoffs, being aware that all players are following the very same logic. Indeed, this require-
ment produces the same outcome that we would observe by imposing the absence of ex post
regrets.

The formal definition that summarizes both the above intuitive versions is as follows.

DEFINITION 3.1 Given a non-cooperative game G ≡ 〈N , Si ,πi (s)〉 with imperfect, com-
plete and symmetric information, the outcome ŝ ≡ (ŝ1, ŝ2, . . . , ŝN ), with ŝi ∈ Si for all i ∈ N ,

is a Nash equilibrium if and only if

πi (ŝi , ŝ−i )≥ πi (si , ŝ−i ) for all si 	= ŝi , si ∈ Si

and this holds for all i ∈ N .

This amounts to saying that ŝ is a Nash equilibrium if, ex post, no player i has a uni-
lateral incentive to deviate from ŝ unilaterally, given that the other players’ behaviour
ŝ−i ≡ (ŝ1, ŝ2, . . . , ŝi−1, ŝi+1, . . . , ŝN ). This holds precisely because ŝi is i’s best reply to ŝ−i .

Observe now the following simple statement contained in Nash’s theorem.4

THEOREM 3.1 (NASH, 1951) Every finite game G ≡ 〈N , Si ,πi (s)〉 produces at least one
Nash equilibrium in mixed strategies.

It is worth noting that neither the definition of the equilibrium concept nor the existence
theorem mention whether the game at hand is a variable-sum one or not. Indeed, this aspect
is irrelevant, as the Nash equilibrium can be thought of as a generalization of von Neumann’s
minimax equilibrium, and coincides with the latter in constant-sum games.

To see this, reconsider the game in Matrix 3.1, from the standpoint of each player in
turn. If player 2 selects s21, 1’s best reply is to play s11. In such a case – that is, if 1 plays
s11 – the optimal behaviour of 2 consists indeed in choosing s21. Accordingly, the outcome
(s11, s21), identifying the maximin (or minimax) equilibrium, is also a Nash equilibrium in
pure strategies. At this point it is also easy to check that it is the unique pure-strategy Nash
equilibrium of Matrix 3.1.

Now let’s go back to Matrix 3.2, in relation to which we know that the minimax criterion
is not applicable. Using the Nash equilibrium concept instead, this game is easily solved
to yield two Nash equilibria in pure strategies, identified by the outcomes (s11, s21) and
(s12, s22).

This result casts a shadow upon the Nash equilibrium concept: a finite variable-sum game
may indeed produce a plethora of equilibria in pure strategies, leaving players (as well as
external observers, like us) in what we might label at first sight as the fog of strategic uncer-
tainty concerning the real unravelling of the game. What shall we expect to arise as the
outcome of the game? One of the (many) Nash equilibria, or some other outcome gener-
ated by a mistake, something that a priori is not a Nash equilibrium? This problem, which
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is known in the literature on game theory as the issue of the multiplicity of equilibria, has
generated a lively stream of research concerning the so-called refinements of the Nash equi-
librium. These are more sophisticated (or, more demanding) solution concepts to be used
so as to perform a selection among the Nash equilibria characterizing a given game, ideally
isolating one Nash equilibrium that, for some acceptable reasons, looks more solid or more
credible than the others.

3.2 Refinements of the Nash equilibrium
Carrying out an exhaustive overview of equilibrium refinements is probably an overwhelm-
ing and ultimately hopeless task, as their list is growing steadily on an almost daily basis.
Moreover, this objective would not be in accord with the aims of the present volume. For
these reasons, I will confine my attention (and yours) to the few refinements that are more
intuitive than others and also most commonly used:

• equilibrium in dominant strategies;
• focal point equilibrium;
• subgame perfect equilibrium; and
• risk dominance (in a section of its own).

3.2.1 Equilibrium in dominant strategies

This refinement is based on an idea that we have already encountered at the outset of this
chapter, that is, the possibility that a player’s best reply be invariant to the rivals’ strategies.
If this sort of automatic pilot does work, the resulting best reply qualifies as that player’s
dominant strategy. The rigorous definition is as follows.

DEFINITION 3.2 Strategy s̃i ∈ Si is (at least weakly) dominant for player i if it maximizes
his/her payoff πi (s̃i , s−i ) irrespective of the opponents’ behaviour s−i , that is, if and only if

πi (s̃i , s−i )≥πi (si , s−i ) for all si 	= s̃i , si ∈ Si

If the above inequality holds strictly, then s̃i is strictly dominant; otherwise, if it holds as
an equality for at least some admissible s−i , then it is weakly dominant.

In agreement with Definition 3.2, if all players do have a dominant strategy (or at least one
that is weakly so) and adopt it, the outcome identified by the combination of (at least weakly)
dominant strategies will qualify as an equilibrium in dominant strategies, as follows.

DEFINITION 3.3 Given a game G ≡ 〈N , Si ,πi (s)〉, the outcome s̃ ≡ (s̃1, s̃2, . . . , s̃N ), with
s̃i ∈ Si for all i ∈ N , is an equilibrium in (at least weakly) dominant strategies if and only if

πi (s̃i , s−i )≥πi (si , s−i ) for all i ∈ N

This concept deserves a few comments. In particular, it is worth dwelling upon the differ-
ence between the condition that must be satisfied for an outcome to be a Nash equilibrium
and the one contained in Definitions 3.2 and 3.3 in order for a dominant strategy equilibrium
to arise. While the former requires a player to identify the best reply to every possible strat-
egy chosen by any rival – whereby no ex post regrets may exist – the latter poses a much
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stronger requirement, which consists in finding a strategy yielding a payoff systematically at
least as high as that for any other strategies the same player could adopt, no matter what the
opponents do. Relatedly, as we shall see below, the existence of an at least weakly dominant
strategy for a player does not necessarily entail that this player’s best reply will be unique.
To put it differently, this indeed entails that we commonly observe games with several Nash
equilibria in pure strategies, generated by the crossing of best replies, and, if we’re lucky,
one of these equilibria will emerge as an equilibrium in at least weakly dominant strategies.
Equivalently, we may say that while every dominant strategy equilibrium is also a Nash
equilibrium, the opposite is not true. In the light of these considerations, it should be clear
that the dominance criterion is much more demanding than the no ex post regrets criterion
embodied in the Nash equilibrium concept.

Having said that, it is now time to put aside linguistic tricks and proceed to see how
dominance works. To this end, I will illustrate a very famous game, the so-called prisoners’
dilemma. This is represented in Matrix 3.4.

The situation described in this game is usually spelled out as the following traditional
story. The players are two criminals who are suspected of having committed a crime (say, a
bank robbery by night) together. The police caught them, and brought them in front of the
district attorney. However, evidence is lacking, and therefore the district attorney may only
rely upon a full confession on the part of at least one of the prisoners. Therefore, the two
racketeers are locked into two separate cells to prevent any communication between them,
and the attorney interrogates them in turn, hoping to obtain a confession.

Formally, this picture yields a non-cooperative variable-sum game, with imperfect, com-
plete and symmetric information.5 Prisoners have two pure strategies, either to confess (c)
or not to confess (nc). The payoffs appearing in the matrix represent the time spent in jail
depending on the outcome. Hence, they are all negative, with a relevant exception concerning
what happens if one prisoner confesses while the other doesn’t.

Clearly, both prisoners are aware that they’d better not say anything, as in such a case
(i.e., corresponding to (nc,nc)) they would be readily released. However, they cannot com-
municate and therefore cannot rely on credible agreements between them, and the key of
the game lies in the interpretation of the asymmetric outcomes along the secondary diagonal
of the matrix, where one is confessing while the other is not. The story usually tailored to
fit these outcomes is that the attorney offers to each prisoner the possibility of leaving the
police station immediately as a free man (provided the other is keeping his/her mouth shut)
after signing a full confession recognizing the responsibility of both. This makes strategy nc
strictly dominant over strategy c, as each prisoner hopes to attribute the full punishment to
the other and go back to the pub to play pool and drink beer. Unfortunately for the prisoners,
this mechanism selects outcome (c, c) at the equilibrium in dominant strategies of the game,
which is also its unique Nash equilibrium in pure strategies, as can be easily ascertained.

A few additional observations will help shed some further light on the striking relevance
of a game like the prisoners’ dilemma.

Matrix 3.4 The prisoners’
dilemma

2
nc c

1 nc −1;−1 −10;0
c 0;−10 −5;−5
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• Its formal structure is very common in real-world situations that are surely familiar to all
of you. To illustrate this point, consider first that the driving force behind the disastrous
equilibrium outcome is called the free-riding incentive. Why? Because each prisoner con-
fesses for the very same reason many people take the bus without paying tickets every day.
It is also the same reason why anyone may decide to keep the air conditioner in the office
on around the clock, seven days a week, even if this clearly contributes to global warm-
ing. At this point, it should be clear that the games in Matrices 2.1 and 2.2 are prisoners’
dilemma.

• Relatedly, the equilibrium is Pareto-inefficient. The prisoners’ dilemma is the proto-
typical structure to be used to illustrate that selfishness (or, more politely, rational
non-cooperative maximization of individual objectives) is bound to produce socially
suboptimal outcomes. Free-riding incentives and Pareto inefficiency are intimately con-
nected. The idea that binding agreements are ruled out is in some sense implicit in the
non-cooperative nature of the game, preventing the players from generating (nc,nc) as the
equilibrium. The possibility that a prisoners’ dilemma may indeed yield Pareto-efficient
equilibria, and the conditions that must hold for this to happen, will be investigated in
Chapter 5.

The second game that we shall take into consideration to become acquainted with the
dominance criterion is in Matrix 3.5, where the players’ strategies are (t = top,b = bottom)

for 1 and (l = left, r = right) for 2.
This game produces two Nash equilibria in pure strategies, (t, l) and (b, r). This is easily

checked: if 1 plays t, the best reply of 2 is to play l, and conversely. Suppose now 2 chooses r.
In such a case, 1’s best reply is b; given the strategy played by 1, 2 has no incentive to deviate
towards l, as this yields exactly the same payoff (remember that a unilateral deviation must
bring about a strictly positive gain for a player to deviate). Hence, both outcomes along
the main diagonal of the matrix are pure-strategy Nash equilibria. At first sight, this poses
a question as to the actual outcome of the game, as, say, player 1 selects t expecting to
generate the equilibrium (t, l) while the rival chooses r expecting the equilibrium (b, r) to
obtain. Observe though that, while player 1 has no dominant strategy, there is a weakly
dominant strategy for player 2, which is left, since 2 > 0 and 3 = 3. On this basis, player 1
may expect 2 indeed to select left, in which case the right column of Matrix 3.5 becomes
immaterial. This generates a reduced form of the game as in Matrix 3.6, where 1 identifies
top as his/her strictly dominant strategy, since 6 > 3.

Matrix 3.5

2
l r

1 t 6;2 0;0
b 3;3 3;3

Matrix 3.6

2
l

1 t 6;2
b 3;3
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This leaves us with a further reduced form game, consisting of the single outcome (t, l)
that qualifies as a Nash equilibrium in (weakly) dominant strategies, attained by iterated
deletion of (weakly) dominated strategies. It is worth stressing that the assumptions of com-
mon knowledge and complete information allow both players to reconstruct this line of
reasoning in advance (that is, before actually playing the game). The expected result is that
the column player will indeed disregard the right column as it represents a weakly dominated
strategy, allowing then the iteration taking place in the minds of both players to trigger an
equilibrium selection process yielding (t, l) as a credible outcome. The latter is more credi-
ble or more solid than (b, r) precisely because it doesn’t involve the adoption of dominated
strategies (or at least weakly so). Note, however, that (b, r) remains a Nash equilibrium
and therefore cannot be dismissed as irrelevant. Several good reasons for not disregarding it
altogether will become clear in the remainder of this chapter.

To further illustrate how iteration works, look at the non-cooperative game in Matrix 3.7,
where information is again complete, symmetric and imperfect. This game has two Nash
equilibria in pure strategies, (t, l) and (m, r). From the standpoint of player 2, strategy r
weakly dominates strategy l, and the equilibrium (m, r) is the intersection of weakly domi-
nant strategies, attained by iteration. Indeed, player 1 will dismiss b as it is strictly dominated
by both t and m. Having eliminated the left column, what remains of the matrix reveals that
m dominates t along the right column.

However, the above discussion does not imply that dominance is a definitive solution to the
issue of equilibrium selection in matrix games with imperfect information. Several famous
examples will clarify this aspect. The first is depicted in Matrix 3.8, and it is traditionally
known as the battle of the sexes. The two players, he and she, are dating each other. To keep
things as simple as possible, let’s say that they may go either to the movies (m) or to the
stadium (s). She prefers the first option, while he prefers the second; yet, both prefer to go
to the same place together rather than to different ones alone. These reasonable assumptions
underlie the sequence of payoffs.6 Both outcomes along the main diagonal, (m,m) and (s, s),
are pure-strategy Nash equilibria. Yet, dominance doesn’t help us here, as neither player
exhibits a dominant strategy (or at least weakly so).

Another game with similar properties is the so-called chicken game that appears in
Matrix 3.9. The players are, say, Kurt Russell (K) and Sylvester Stallone (S) driving their
two magnificent trucks. They find each other at the opposite ends of a very narrow bridge
without road lights. Both of them are endowed with a very strong personality and care about

Matrix 3.7

2
l r

t 2;8 2;8
1 m 0;1 4;2

b −1;3 1;7

Matrix 3.8 The battle of
the sexes

He
m s

She m 2;1 0;0
s 0;0 1;2
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Matrix 3.9 The chicken
game

S
c nc

K c 0;0 2;1
nc 1;2 0;0

the consideration of the community of truck drivers. Therefore, each would like to be the
first to cross the bridge in order not to be marked as a chicken (i.e., a coward) by his fellow
truck drivers. The resulting pure strategies are to cross (c) or not to cross (nc).7

Clearly, every asymmetric outcome along the secondary diagonal identifies a Nash equi-
librium in pure strategies, and we cannot resort to dominance as an equilibrium selection
mechanism. Games like these are usually labelled as coordination games, as they describe
situations generating a multiplicity of Nash equilibria that requires the adoption of some
commonly accepted coordination devices: habits, traditions, rules, laws. In the case of Kurt
and Sylvester, a simple road light will do. For the couple playing the battle of the sexes, a
reasonable rule (and indeed one that is very often adopted, also according to my personal
experience) consists in alternating movie and stadium on a weekly basis, depending on the
calendar of the football championship, right?

The third example in the field of coordination games is the so-called stag hunt game. In
some sense, this is a noble example, as it dates back to Rousseau.8 A tribe of early Homo
sapiens is setting off to hunt game (sorry for the pun!), consisting of either stag (s) or rab-
bit (r ), for simplicity. Two hunters, 1 and 2, are in charge of feeding their people, knowing
that: (i) each hunter can surely come back to the village every day with a rabbit; while (ii) it
takes both of them to get the stag, because if only one hunter tries his luck after it, the stag
runs away unscathed; and finally (iii) a stag is worth more than two rabbits. Say, the nutrition
facts of our stylized prehistoric tale establish that you need ten rabbits to make up for a stag.
This situation is represented in Matrix 3.10.

A quick look at the matrix suffices to see that there are two Nash equilibria in pure strate-
gies, (s, s) and (r, r), and the game cannot be solved in dominant strategies. This is in fact
the same structure as emerges from Matrix 3.3, whose essential feature is that the two Nash
equilibria can be Pareto-ranked. The same applies here: the tribe would be better off if its
hunters went for a stag, but Pareto-efficiency in itself does not ensure that they won’t waste
their time killing rabbits instead, then coming back to the village with comparatively lit-
tle food. That is, the lack of relationship between Nash and Pareto prevents us, in general,
from invoking efficiency as a criterion for equilibrium selection. Of course, there is a way
out of the coordination issue posed by Matrix 3.10, coinciding with Rousseau’s suggestion:
the chief (or the council) of the tribe may solve the problem by adopting a rule establishing
that hunters should forget about rabbits and concentrate on the stag (possibly with drastic
consequences if they don’t).

Matrix 3.10 The stag hunt
game

2
s r

1 s 5;5 0;1
r 1;0 1;1



March 1, 2011 13:27 Pinched Crown A Page-31 GTSS_Chapters

Solving a game 31

Matrix 3.11

2
l r

t 10;25 1;25
1 m 4;10 9;10

b −3;8 −7;1

The games we have reviewed thus far belong to two categories, one collecting games
where iterated dominance works and selects one out of several Nash equilibria, and the other
collecting games where the dominance criterion simply doesn’t apply (like the battle of the
sexes or the stag hunt game). There are also other games lying in a sort of no-man’s land,
where the iterated deletion of at least weakly dominated strategies works – at least to some
extent – but apparently yields weird results.

Consider the game represented in strategic form in Matrix 3.11. This is a 3 × 2 game
yielding two pure-strategy Nash equilibria, (t, l) and (m, r). Can the iterated deletion of (at
least weakly) dominated strategies help delete any rows or columns, so as to ultimately select
a single equilibrium?

This turns out to be an ambiguous procedure in the present game. Consider first the column
player, agent 2. Strategy l weakly dominates r , and therefore the latter can be deleted. In the
residual 3 × 1 matrix, player 1 selects t as a strictly dominant strategy. Hence, the iterated
deletion process seemingly points at (t, l) as the credible equilibrium.

This conclusion, however, is doomed to be contradicted if we start deleting dominated
strategies taking the row player’s perspective first. In such a case, we see that, given that
strategies t and m strictly dominate strategy b, the latter can be deleted. Looking at the
remaining 2 × 2 matrix, however, player 2 realizes to be just indifferent between l and r (and
also player 1 is aware of that). Hence, they get stuck into a 2 × 2 matrix yielding the same
two Pareto-rankable equilibria already characterizing the original larger matrix. The delicate
issue here is that what we imagine (the process of deleting dominated strategies) does not
take place in the game, but rather in the players’ minds beforehand. Therefore, each of them
has to conjecture about the fictitious order of deletion that the opponent is envisaging, and
the two orders may not be reciprocally compatible.9

This brief overview of relatively simple games gives a rough idea of the problems encoun-
tered by players in trying to envisage the equilibrium outcome of a given game. But their life
can be much worse than this, as many games are far more complex than the ones we have
seen so far. The next refinement tackles precisely this aspect.

3.2.2 Focal point equilibrium

The notion of focal point equilibrium dates back to Schelling (1960). It can be understood
in purely intuitive terms on the basis of the following informal definition. Suppose a game
produces a large number of Nash equilibria (i.e., in general, strictly more than two) in pure
strategies; if there is one emerging from the bunch of equilibria for any plausible reason
because it is different from all the others, this equilibrium qualifies as the natural solution or
focal point of the game. This is illustrated in Matrix 3.12.

This is a ‘large’ game, where each player may choose among n strategies. The resulting
n × n matrix (of which only the 5 × 5 top-left portion is represented) is characterized by the
fact that any strategy pair identifying a cell along the main diagonal is a Nash equilibrium.
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Matrix 3.12 A ‘large’ coordination game

2
s21 s22 s23 s24 s25 . . .

s11 100;100 −1;−1 −1;−1 −1;−1 −1;−1 −1;−1
s12 −1;−1 100;100 −1;−1 −1;−1 −1;−1 −1;−1

1 s13 −1;−1 −1;−1 7;7 −1;−1 −1;−1 −1;−1
s14 −1;−1 −1;−1 −1;−1 100;100 −1;−1 −1;−1
s15 −1;−1 −1;−1 −1;−1 −1;−1 100;100 −1;−1
. . . −1;−1 −1;−1 −1;−1 −1;−1 −1;−1 100;100

The peculiar feature of the set of Nash equilibria is that all of them, except one (the pair
(s13, s23)) yield the same payoffs. This creates, in principle, a huge coordination problem to
players acting under imperfect information, as the probability of making systematic mistakes
is extremely high: if, say, 1 is considering the adoption of strategy s12 under the conjecture
that 2 will play s22, while the latter is conjecturing to play s25 (or any strategy other than s22),
the outcome will be outside the main diagonal.

Here Schelling’s focal point concept comes into the picture to help players solve the coor-
dination problem, by noting that (s13, s23) is different from any other Nash equilibrium, as if
it were under a strong spotlight attracting the players’ attention. Note that (s13, s23) qualifies
as the focal point equilibrium of Matrix 3.12 simply because of its peculiarity, not because it
is any better than any other Nash equilibrium – in fact, in this example it is much worse!

This argument reinforces the bottom line of the foregoing discussion on coordination
games where Nash equilibria can be Pareto-ranked (as, e.g., the stag hunt game), namely,
that there is no relationship between the criterion of individual rationality underlying the
Nash equilibrium concept and that of Pareto efficiency, the latter being obviously palatable
but far from offering an easy way out of the multiplicity problem.

So much for coordination games. No, something extremely relevant remains to be said
about this class of games. We may further investigate them using another refinement of the
Nash equilibrium concept, which has quickly become one of the main instruments of game
theory, and has largely contributed to produce a wide range of useful applications in all areas
of the social sciences.

3.2.3 Subgame perfect equilibrium by backward induction

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time

T. S. Eliot,
Little Gidding (Four quartets)

So far, we have examined only games in strategic form. Now, we enter the realm of games
represented in extensive form, the so-called Kuhn tree. The concept of subgame perfect
equilibrium (Selten, 1965, 1975) is indeed defined in relation to the extensive form of a
game.

DEFINITION 3.4 Given a game G ≡ 〈N , Si ,πi (s)〉, the outcome s̄ ≡ (s̄1, s̄2, . . . , s̄N ), with
s̄i ∈ Si for all i ∈ N , is a subgame perfect equilibrium by backward induction if it induces a
Nash equilibrium in every proper subgame of the original game.
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At first sight, this definition may sound somewhat obscure. A few terms appearing in
the definition deserve some careful explanation. The first is backward induction. In prac-
tice, a subgame perfect equilibrium must be identified by using the backward induction
method, i.e., proceeding from bottom to top along the extensive form of the game. Bluntly
speaking, backward induction is the process of reasoning backwards in time, to determine a
sequence of optimal actions. It proceeds by first considering the last time a decision has been
taken and then choosing what to respond rationally to such a decision. Using this informa-
tion, one can then determine what to do at the second-to-last time a decision has been taken,
and so on and so forth. This process keeps going backwards until one has determined the
best action at every point in time (along a game tree, at every node). In a game, the backward
induction process starts from the terminal nodes to reach the root of the tree, examining the
optimality of decisions taken at each and every intermediate node, no matter how many of
these there are. The second element requiring our attention is the concept of proper subgame.
As we already know from Chapter 2, a proper subgame is a subset of a game tree departing
from a singleton, which in turn is an intermediate node unconnected with any other node
at the same level. Having said that, it should be clear that the elective field of application
of the subgame perfect equilibrium is the realm of games with perfect information, that is,
those in which players move sequentially, each of them thus being able to correctly recol-
lect the entire past history of the game up to the point where he/she is required to choose a
strategy. Also, these are the games that lend themselves to a graphical representation in the
form of Kuhn’s trees, which of course helps to visualize the solution generated by backward
induction.

To grasp the operational contents of the notion of subgame perfection, consider the whole
set of admissible extensive forms generated by the game we have already encountered in
strategic form in Matrix 3.5.

The first (Figure 3.1) describes the case where player 2 moves after player 1, and there-
fore enjoys perfect information. Note that the subgame starting from the right singleton is
not pictured as choice of strategy b by player 1 makes the subsequent behaviour of player 2
irrelevant in that the payoff pair is surely (3,3). Accordingly, focus your attention on the
left subgame, which becomes relevant if player 1 chooses t . In this subgame, player 2 may
get either 2 or 0: since 2 > 0, you may expect player 2 to select l as a best reply to t . With
this in mind, you may now proceed backwards to examine player 1’s conjectures at the root.
Having in mind that (i) player 2 will respond to t by choosing l, while (ii) he/she will be

1

2

t b

l r

6, 2 0, 0

3, 3

Figure 3.1 Perfect information for player 2
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2

1

l r

t b t b

6, 2 3, 3 3, 30, 0

Figure 3.2 Perfect information for player 1

indifferent between l and r if player 1 chooses b, 1 is facing the alternative of getting either
6 by playing t or 3 by playing b. Since 6 > 3, player 1 will prefer to play t . Therefore,
the subgame perfect equilibrium of the game where information is perfect for player 2 is
(t, l). It is worth stressing that this coincides with the Nash equilibrium in (weakly) dom-
inant strategies previously identified by the examination of the strategic form of the same
game.

The alternative situation, where information is perfect for player 1 (because player 2 is at
the root) is represented in Figure 3.2 (to avoid confusion, the order of payoffs is the same
as in the original matrix and Figure 3.1). Here both subgames must be drawn explicitly, as
player 1 is never indifferent between t and b. By backward induction, we see that the best
reply to l is t , while the best reply to r is b. Hence, player 2 knows that he/she will get 2
by playing l and 3 by playing r. Accordingly, in this case the subgame perfect equilibrium
will be (r,b), i.e., the Nash equilibrium that one would dismiss as involving the adoption of
a weakly dominated strategy on the basis of the above analysis of Matrix 3.5.

This simple example shows that, in general, the subgame perfect strategy profile is sen-
sitive to the sequence of play, and the fact that a Nash equilibrium involves the use of a
(weakly) dominated strategy does not entail that there is no sequence of play under which
that outcome can qualify as a subgame perfect equilibrium. This shows, additionally, that
under sequential play there exists a first-mover advantage whereby the player entitled to
move before the other(s) may drive the game in the direction of a specific Nash equilibrium
among those generated by the game at hand.

These properties of perfect information games play a crucial role that will become appar-
ent when we discuss applications to economics and politics in the next chapter. Here, we
may further dwell upon these features of sequential play by re-examining some of the games
we have already seen in the first part of this chapter. Before doing this, it is just the case of
asking ourselves what happens if we try to use backward induction and subgame perfection
in a game with imperfect information. To this end, have a look at the extensive form game
appearing in Figure 3.3. This is the tree generated by Matrix 3.5 if players move simulta-
neously.10 Since intermediate nodes are connected, the game possesses a unique improper
subgame, coinciding with the tree itself. Hence, according to Definition 3.4, any Nash equi-
librium of the original game appears subgame perfect here, which amounts to saying that
subgame perfection is applicable but fails to operate the desired selection between the two
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1

2

t b

l r l r

6, 2 0, 0 3, 33, 3

Figure 3.3 Imperfect information (simultaneous play)

Nash equilibria (or equivalently, it is no longer a refinement). This should clarify once and for
all that subgame perfection is a useful selection tool if and only if the game is characterized
by perfect information.

Now let’s reconsider the battle of the sexes, and, ladies first, let’s suppose that she is at the
root and moves first. This extensive form game is shown in Figure 3.4 (again, the order of
payoffs at every terminal node is the same as in Matrix 3.8).

Corresponding to each intermediate note, the best reply of the man is to adopt the same
strategy adopted by her at the root, for obvious reasons. Therefore, the woman’s perception
of the game from the initial node induces her to move in the direction of the movie theatre.
So, if she plays first, the subgame perfect equilibrium is (M, M). Of course, the opposite
applies if the man moves first, in which case subgame perfection selects (S, S). Therefore,
the subgame perfect equilibrium is indeed unique, for a given sequence of play.

An even more interesting (and relevant) result emerges by reconsidering the stag hunt
game played under perfect information. Assume hunter 1 is at the root (that is to say, suppose
he leaves the village before hunter 2). This case is portrayed in Figure 3.5.

Clearly, the presence of perfect information selects (s, s) as the unique subgame perfect
information, because the hunter located at the intermediate nodes finds it optimal to choose

she

he

M S

M S M S

2, 1 0, 0 1, 20, 0

Figure 3.4 The battle of the sexes (ladies first)
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1

2

s r

s r s r

5, 5 0, 1 1, 11, 0

Figure 3.5 The stag hunt game under perfect information

(i) strategy s having observed the first mover playing s (this happens at the left singleton) or
(ii) strategy r having observed the first mover playing r (this happens at the right singleton);
hence, the hunter at the initial node selects s because 5 > 1.

This is an intuitive example pointing in the direction of a general result, which I will state
without further unnecessary and involved proof.

THEOREM 3.2 In a game generating multiple Nash equilibria that can be Pareto-ranked,
the adoption of sequential play (or equivalently, the presence of perfect information) leads to
the selection of the Pareto-efficient equilibrium as the subgame perfect solution, irrespective
of the order of moves followed by players.11

This theorem conveys a very powerful message, namely, that increasing the amount of
information available to players – in particular, making the game one of perfect information
via sequential play – generates an equilibrium selection process resulting in individual ratio-
nality (i.e., selfishness) going hand in hand with social efficiency. This mechanism, however,
operates only in the relative restricted class of games yielding multiple equilibria on which
the order of preference is exactly the same across the population of players. This, unfortu-
nately, immediately entails that sequential play is no medicine for the prisoners’ dilemma,
where the Nash equilibrium is unique.

There is more to it: sequential play, backward induction and subgame perfection may yield
equilibria in pure strategies even in games where Nash equilibria under simultaneous play
indeed fail to exist. This is an intriguing and a bit more advanced topic, to which I will come
back when dealing with mixed-strategy equilibria, in the last section of this chapter.

3.3 Warnings
At this point, it is just fair – and wise – to pause a little and take time to reflect on a few
critical aspects of what we’ve seen so far. In particular, I will draw your attention to two
famous games that invite us to use game theory and take the indications yielded by the theory
itself with extreme care, and a pinch of salt. The first of these games is aimed specifically
at the backward induction mechanism, while the second has a more general flavour, as it
tackles the issues of individual rationality and maximizing behaviour.
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Figure 3.6 The centipede game

3.3.1 The centipede game

The so-called centipede game (Rosenthal, 1981) is a widely used example to highlight that
backward induction and the associated subgame perfect equilibrium concept (as well as, for
completeness, the iterated deletion of dominated strategies) may sometimes lead one to draw
unreliable theoretical predictions concerning the outcome of games with perfect information.
The centipede is an extensive form game with two players acting sequentially, each one for
the same number of rounds, along a tree like the one illustrated in Figure 3.6.

At every node, a player may choose either to exit (e) or to continue (c). Agents act under
perfect, symmetric and complete information. Reasoning by backward induction, starting
from the last node, one should infer that player 2 will select e because 7 > 4. One node
back, player 1 rationally anticipates this behaviour on the opponent’s part, and therefore
must choose e because 5 > 4. That is, at every node strategy e strictly dominates strategy c
and this applies as well to the initial node, at which 1 should exit immediately. Therefore,
the subgame perfect equilibrium requires the player moving at the root to exit, so that the
entire tree will not materialize and the other agent will never play at all.

Very much like the ultimatum game, the centipede game is also designed to send out a
warning message against the indiscriminate use of our instruments – or, it warns that one
should not blindly trust the prediction of a theoretical set-up based on rationality and (purely
selfish) maximization. Indeed, experimental results12 indicate that the outcome qualifying
as the unique subgame perfect equilibrium of the game is almost never confirmed in prac-
tice, irrespective of the population of players that is employed to carry out the experiment
(students, chess players, civil servants, etc.). The actual distribution of observed outcome
depends on the size of the stakes and the number of rounds, so that in general the game does
unravel for a number of rounds before anyone decides to exit.

However, the way in which backward induction drives agents’ behaviour in the centipede
game can also be interpreted in another way – possibly much more intriguing than the afore-
mentioned warning. If you go back for an instant to note 3 in Chapter 1, and read again von
Neumann’s statement as to the plausibility of a preventive nuclear strike against the USSR,
you will certainly appreciate its genuine backward induction flavour and its close similarity
to the theoretical (if not practical) solution of the centipede game.

3.3.2 The ultimatum game

The ultimatum game is a one-shot two-player non-cooperative game, with perfect, symmet-
ric and complete information, where a player (labelled as player 1) is given a certain amount
of money, say, 100 euro, and has to split this sum between himself and player 2. The latter
can either accept or reject 1’s proposal. If player 2 rejects the offer, neither player receives
anything. If, instead, player 2 accepts it, the initial amount of money is split between them as
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proposed by player 1. Both players are fully aware of all this. Given that the minimum admis-
sible amount that 1 can offer to 2 is one cent, this would indeed be the proposal that 1 should
decide to do under the assumptions of individual rationality and maximizing behaviour: if
one takes these assumptions at face value, player 2 should accept such an offer, since one
cent is better than nothing.

Yet, experimental results prove that this is almost never the case. Indeed, the vast majority
of people playing the role of player 1 in experiments carried out on the ultimatum game (with
real money) propose their counterparts something between 30 per cent and 60 per cent of the
initial sum.13 Why? For many different but equally good reasons, like altruism, fairness,
empathy and risk aversion. Player 2, facing the perspective of going home with a single cent,
might well have fun in rejecting the proposal just for the sake of melting away the 99.99 euro
that player 1 is so lavishly expecting to get. After all, one cent is more than nothing, but is
also very close to nothing!

The experimental evidence generated through the ultimatum game is generally considered
as strong evidence against the Homo oeconomicus, as seen through the magnifying lenses
of rationality and maximization. My personal view is a little milder. As in the case of the
centipede game, a warning is a warning, and is not necessarily valid across the board. Were
it so, then you might as well stop reading the book at this point. Please do not, as the best is
yet to come.

Before proceeding any further, it will be useful to draw some synthetic considerations on
the toolkit we have reviewed thus far. To begin with, a finite non-cooperative variable-sum
game may yield several Nash equilibria. Hence, the Nash equilibrium appears not to be such
a demanding solution concept – indeed, the problem with it is that it works far too well, and
too often. Consequently, researchers have designed other, and more sophisticated, solution
concepts – like the equilibrium in dominant strategies and the subgame perfect equilibrium –
aimed at operating a selection out of the riches of Nash equilibria, in order to dismiss all of
them but one that qualifies as more credible or robust according to some acceptable criteria.
Is it possible to assess and rank the strength and effectiveness of subgame perfection and
dominance? To some extent yes, provided that each of the two solution concepts operates in
its own elective domain (the dominance criterion is usually adopted to solve games in strate-
gic form under imperfect information, while subgame perfection is a meaningful concept
only in extensive form games with perfect information). This appraisal is carried out in the
following theorem, of which – as usual, by now – I will not provide a formal proof.

THEOREM 3.3 In a game G ≡ 〈N , Si ,πi (s)〉 yielding multiple Nash equilibria in pure
strategies, the following statements hold true.

(i) An equilibrium in (at least weakly) dominant strategies may fail to exist. If it exists, it
is an element of the set of subgame perfect equilibria generated by every admissible
sequence of moves.

(ii) The set of subgame perfect equilibria is a subset (sometimes, a proper one) of the
set of Nash equilibria.

We are now in a position to make a couple of additional steps and deal with probabilities
and risk.
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Matrix 3.13

2
l r

1 t 10;10 0;5
b 5;0 7;7

3.4 Risk dominance
What if a player is uncertain about the other players’ strategies? This issue is particu-
larly relevant in games yielding more than one Nash equilibrium in pure strategies, i.e., all
games involving coordination issues. Consider a coordination game like the one illustrated
in Matrix 3.13.

This game has two Nash equilibria in pure strategies, (t, l) and (b, r), the former being
the Pareto-optimal outcome. However, as we already know, Pareto efficiency does not nec-
essarily offer a way out of the coordination problem. Here is the point where the concept
of risk dominance (Harsanyi and Selten, 1988) kicks in. The risk is measured by the possi-
ble damage generated by unilateral deviations from the Nash outcomes. Take the angle of
player 1. In particular, observe that playing t yields a payoff equal to 10 if the other player
chooses l, but what if he/she chooses r? Parallel to this, also note that a unilateral deviation
by player 2 from (b, r) gives player 1 a healthy payoff equal to 5. Player 1 of course dislikes
the idea of getting zero, and is aware that a unilateral deviation by the rival is more harmful
when departing from (t, l) than from (b, r).

Following Harsanyi and Selten (1972), we say that (b, r) risk-dominates (t, l) because

(10 − 5)(10 − 5)= 25 < 49 = (7 − 0)(7 − 0)

i.e., because the product of the losses generated by unilateral deviations is higher for (b, r)

than for (t, l). The bottom line of risk dominance is to evaluate how attractive is unilateral
deviation from any given Nash equilibrium of a game yielding more than one equilibrium in
pure strategies. Or equivalently, risk dominance serves the purpose of comparatively assess-
ing Nash equilibria in terms of their relative stability, and spot the one that emerges as the
largest basin of attraction, so to speak, for the whole game.

3.5 Nash equilibrium in mixed strategies
Now we turn to probabilities. Theorem 3.1 establishes that every finite game yields at least
one Nash equilibrium in mixed strategies. The mirror image of this claim is that there will be
uncountably many finite games in which there exist no pure-strategy Nash equilibria. One
such example is the so-called matching pennies game, appearing in Matrix 3.14.

Each player has two pure strategies, h (‘heads’) and t (‘tails’). A quick look at the matrix
reveals that this is a zero-sum game. This feature is not necessary to make the point, but it

Matrix 3.14 Matching
pennies

2
h t

1 h 1;−1 −1;1
t −1;1 1;−1
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is usually adopted to clarify that the same applies as well to the subclass of constant-sum
games that one would commonly solve via von Neumann’s minimax (or maximin) criterion.

Along the main diagonal (where both agents play symmetrically), 2 pays one euro to 1,
while the opposite happens along the secondary diagonal, in every asymmetric outcome.
Hence, either 1 or 2 has a strict incentive to deviate unilaterally from every strategy combi-
nation, and the game has no Nash equilibrium in pure strategies.14 However, according to
Theorem 3.1, the equilibrium does exist in mixed strategies. Let’s see how it works, and why.

To this end, suppose each player constructs a lottery by assigning complementary prob-
abilities to each strategy, i.e., pih and pi t , with i = 1,2 and pih + pi t = 1, so that, for
instance, player 1 may choose h with probability p1h = 2/5 = 0.4 and t with probability
p1t = 3/5 = 0.6. Unlike what usually happens in lotteries, where probabilities are exoge-
nously given, here it’s up to players to set them. Therefore, the problem each player has to
solve consists in choosing the probability vector optimally. What does optimally mean here?
There are several different (but equivalent) ways of defining optimality in the context of a
mixed-strategy equilibrium. One that – according to me at least – is rather intuitive, is the
following: every player has to choose a vector of probabilities for him/herself, in order to
make each of the rivals indifferent between her/his pure strategies. To understand why it
must be so, consider what would happen if, say, for a given pair of probabilities pih +pi t =1
attached by player i to h and t , respectively, player 2 were not indifferent between h and t .
Being not indifferent, player j would have at least a weak preference for either one, i.e.,
either h or t would be weakly dominant over the other. The immediate implication would
be that j would judge the game as being solvable in (at least weakly) dominant strategies,
something that would create a logical paradox as, to begin with, the matching pennies game
has no Nash equilibrium in pure strategies.

We may now apply this idea to Matrix 3.14, starting with the construction of the expected
payoff for player 2, given a generic probability pair chosen by player 1. The expected payoff,
indicated as Eπ, is nothing but the weighted average of the payoffs accessible to a player
along any row or column, with weights being measured by the probabilities chosen by the
opponent. Player 2 receives

Eπ2(h)=−1 · p1h + 1 · p1t

by playing heads h, or

Eπ2(t)= 1 · p1h − 1 · p1t

by playing tails t . Imposing the indifference condition Eπ2(h)= Eπ2(t):

−p1h + p1t = p1h − p1t

The next step is the simple observation that p1t = 1 − p1h, as pure strategies are mutually
exclusive. Therefore, the above equation can be rewritten as

1 − 2p1h = 2p1h − 1 or, equivalently, 2(2p1h − 1)= 0

i.e., p∗
1h = p1t = 1/2. By symmetry, also p∗

2h = p2t = 1/2. The pair (p∗
1h,p∗

2h) identifies the
Nash equilibrium in mixed strategies – note that it is defined in the space of probabilities
instead of in the space of pure strategies.
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It is also interesting to revisit games with multiple equilibria in pure strategies, using
the Nash equilibrium in mixed ones. For example, let’s go back to the battle of the sexes,
portrayed in Matrix 3.8. He (the row player) is indifferent between m and s if

pshe,m = 2 · pshe,s ⇔ pshe,m = 2(1 − pshe,m)

which yields p∗
she,m = 2/3 and p∗

she,s = 1/3. By the symmetry of the game along the main
diagonal, we also have p∗

he,m = 1/3 and p∗
he,s = 2/3. This result deserves a few comments:

first, both Nash equilibria will be realized with the same probability, equal to p∗
she,m · p∗

he,m =
p∗

she,s · p∗
he,s = 2/9; second, ‘mistakes’ (either (m, s) or (s,m)) will happen with strictly pos-

itive probability, p∗
she,m · p∗

he,s = 4/9 and p∗
she,s · p∗

he,m = 1/9; third, the probability of making
a mistake is higher than the probability of playing a pure-strategy Nash equilibrium, since
5/9 > 4/9. This reinforces the general message generated by coordination games, about the
need to introduce rules or laws to solve the problem and, ultimately, eliminate mistakes
altogether.

A few words about the interpretation of the mixed-strategy Nash equilibrium are in order.
This has been (and continues to be) a delicate issue for game theorists and all those who at
some point have applied this solution concept to any given game in economics and the social
sciences. After all, what does it mean that players will attach some well-defined probability
vector to their pure strategies, if, when the time comes, they will indeed play a single pure
strategy and neglect the others? Put differently, we may be happy to know that the matching
pennies game admits a fully symmetric equilibrium in mixed strategies, so that any outcome
is a priori equally likely to be played, but is this result any more informative than the fact that
no equilibrium exists in pure strategies? An explanation often invoked relies on repetition and
the laws of large numbers. If a game is repeated an extremely large number of times, then
we might expect relative frequencies to reflect the vector of optimal probabilities identifying
the Nash equilibrium in mixed strategies (or conversely, we may hope that probabilities will
coincide with relative frequencies). However, to carry out exercises of this type, a game
must be repeated for an enormous number of times, and this poses serious difficulties both
empirically and experimentally.

An alternative route is to take a broader perspective and consider that we (social scientists)
are not the first to encounter problems of this sort. The same discussions that are taking place
among social scientists concerning the correct interpretation of a Nash equilibrium in mixed
strategies as opposed to the pure-strategy equilibrium also occur among physicists as to the
credibility of the quantum description of the world, as opposed to the Newtonian description.
The latter discussion can be traced back to the famous dispute between Niels Bohr and Albert
Einstein, who, while being one the fathers (although less than voluntarily) of quantum theory,
claimed that ‘God does not play dice with the universe’.15

As a last remark, I would like to draw your attention to a particular aspect of coordination
games that has to do with probabilities. We have seen that one can invoke the concept of risk
dominance as an equilibrium selection tool, by computing the product of deviation losses.
Another way of performing the same exercise consists in making use of probabilities, as
follows. Reconsider the game in Matrix 3.13, and suppose player 2 chooses l with probability
p2l and r with probability p2r = 1 − p2l . With this in mind, player 1 conjectures to get either

Eπ1(t)= 10 · p2l + 0 · (1 − p2l )= 10 · p2l
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or

Eπ1(b)= 5 · p2l + 7 · (1 − p2l)= 7 − 2 · p2l

The value of p2l – labelled as p̂2l – such that Eπ1(t) = Eπ1(b) is called the risk factor of
the Nash equilibrium (t, l), while its complement to one, 1 − p̂2l , is the risk factor associated
with the Nash equilibrium (b, r). Elementary calculations show that p̂2l =7/12 and therefore
1 − p̂2l = 5/12. Fully symmetric considerations hold if one takes the standpoint of player 2.
Interestingly, we can reconstruct the risk factors in terms of unilateral deviation losses, since

p̂2l = 7 − 0

(10 − 5)+ (7 − 5)
= 7

12

and

p̂2r = 1 − p̂2l = 10 − 5

(10 − 5)+ (7 − 5)
= 5

12

Either way, since 5/12 < 7/12, (b, r) risk-dominates (t, l). More specifically, any p2r > p̂2r

and p1b > p̂1b = p̂2r suffice to turn (b, r) into the risk-dominant equilibrium. This is a rel-
evant message whenever players have no way of figuring out their respective probabilities,
and therefore, say, agent 1 conjectures that p2l = 1 − p2l = 1/2. This automatically leads to
select (b, r) as the risk-dominant equilibrium. To complete this rejoinder of risk dominance,
observe that the pair (p̂1t , p̂2l) identifies the mixed-strategy Nash equilibrium of Matrix 3.13,
that is, (p̂1t , p̂2l)= (p∗

1t ,p
∗
2l), since p̂1t and p̂2l make player 2 indifferent between l and r and

player 1 indifferent between t and b.

3.5.1 Subgame perfection: a further vindication

The subgame perfect equilibrium attained by backward induction is usually seen as a refine-
ment of the Nash equilibrium concept. That is, subgame perfection is generally adopted as
an instrument for equilibrium selection in games yielding multiple Nash equilibria in pure
strategies. As a topping on the cake that I’ve offered you in this chapter, I will show you
something more.

Examine the game illustrated in Matrix 3.15. Once again, strategies are t (for top) and b
(for bottom) for 1, and l (for left) and r (for right) for player 2. For a moment, suppose it
is played under imperfect information. If so, then this game possesses no Nash equilibria in
pure strategies, and its solution requires the use of mixed ones (as a useful exercise, you can
work them out).

If instead information is perfect, i.e., players move sequentially, the game in fact yields a
subgame perfect equilibrium in pure strategies. This property can be verified by looking at
Figure 3.7, where player 1 is at the root and therefore information is perfect for player 2.

Matrix 3.15

2
l r

1 t 1;7 10;0
b 5;1 4;3
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1

2

t b

l r l r

1, 7 5, 1 4, 310, 0

Figure 3.7 Perfect information for player 2

If 1 chooses top, 2’s best reply consists in playing left. If instead 1 goes for bottom, then
2 prefers to go right. Hence, as 4 > 1, player 1 chooses bottom and the outcome (b, r)

emerges as the subgame perfect equilibrium in pure strategies.

Further reading

The interested reader may find much more on the subject matter of this chapter in Fudenberg
and Tirole (1991), Osborne and Rubinstein (1994) as well as in the other textbooks already
mentioned at the end of Chapter 2. Classical and unsurpassed references for a thorough
analysis of equilibrium refinements are Harsanyi and Selten (1988) and van Damme (1991).
A comprehensive view on experimental games is offered by Roth (1993) and Camerer
(2003), while a very nice and stimulating read is the paper by Goeree and Holt (2001).

3.6 Appendix: Schrödinger’s paradox
Bluntly speaking, quantum physics can approximately be considered as a generalization of
Newtonian ‘classical’ or deterministic physics.16 In particular, when the phenomena being
investigated involve (i) speeds that are considerably lower than the speed of light in vac-
uum, (ii) sufficiently low gravity and (iii) objects that are neither too small nor too big, then
one can proceed according to the standard Newtonian model. Yet, when it comes either to
the very basic particles (e.g., subatomic particles like electrons and sub-subatomic compo-
nents like quarks), or to the behaviour of objects characterized by an extremely high mass
and therefore also large gravitational force (e.g., black holes, quasars and pulsars), quantum
features become so relevant that they cannot be disregarded.

To understand these seemingly puzzling aspects of physics, one has to accept the idea
that our capability to investigate the world of subatomic particles is inherently affected by
indeterminacy. This is the so-called Heisenberg’s law, whose vulgata can be spelled out
intuitively in the following terms: We cannot know at the same time how fast a subatomic
particle (say, an electron) is moving, and where it is exactly. The knowledge we can produce
is confined to a distribution of the probability that, at any given time, such a particle will be
within a certain interval, given its speed.

As an illustrative example, consider the story traditionally known as Schrödinger’s para-
dox or Schrödinger’s cat in the box, which I am about to tell according to a vulgata
commonly adopted in the current literature in the field.17
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This paradox refers to an experiment, where a cat is locked inside a box, in front of a
handgun, which is loaded.18 The box is opaque to both light and sound, so that the physicist
must open it to observe the cat’s condition. The trigger is linked to a sensor, located outside
the box, in front of a bulb. Assume the physicist can switch on the bulb, producing a sin-
gle quantum of light (a photon) at a time. The sensor measures the spin of the photon. In
the remainder, I will assume conventionally the following. If the photon rotates rightwards
(i.e., the spin is positive), then the sensor pulls the rope (and the trigger), and the handgun
shoots the cat dead. If instead the photon rotates leftwards (i.e., the spin is negative), then
the sensor does not pull the rope (and the trigger), so that the cat survives.

The paradox takes place in the physicist’s mind before the experiment is carried out, or,
equivalently, before he/she opens the box to see whether the cat is still alive or not. The
physicist knows that, ex post, the cat is going to be either dead or alive. However, ex ante,
the two states of the system–cat (i.e., alive and dead) as well as the two states of the world
(which can be labelled as handgun fired because spin was positive and handgun didn’t fire
because spin was negative) coexist in the experimenter’s mind. This paradox persists until
he/she opens the box to observe the cat’s state of health.

Of course, we cannot observe the spin of a single photon. However, if we take a very large
number of photons, and measure their spin with appropriate instruments, we will come up
with the information that half of them rotate rightwards (leftwards). Hence, when a single
quantum of light – randomly drawn from that large number – comes into play, our prior
(as well as the experimenter’s) is that it will rotate either way with probabilities pl =pr =1/2.
Accordingly, the handgun will shoot the cat dead with probability 1/2 (otherwise, again with
probability 1/2, the cat will stay alive). Now define (i) the event ‘shooting’ as s and the
alternative ‘not shooting’ as ns; and the possible states of the cat as a for ‘alive’ and d for
‘dead’. Given these probabilities, the experimenter may forecast the state of the cat at the
end of the experiment according to the following expression, that physicists call the density
matrix:

D = 1

2
〈d | s〉+ 1

2
〈a | ns〉 (3.3)

which says that our expectations about the state of the cat is that it will be dead or alive with
equal probabilities, given that the gun has or hasn’t fired. The symbol | stands for ‘given
that’ or ‘conditional upon’. The peculiar ‘angled parentheses’, 〈 and 〉, appearing in (3.3)
are known as bra and ket, respectively, after Dirac (1930), who was the first to adopt them.
The introduction of the density operator can also be traced back to Dirac (1930) and pops up
again in von Neumann (1932). This indicates that the isomorphism between (i) the theory of
expected utility, game theory and contemporary mathematical economics in general, on the
one hand, and (ii) quantum mechanics, on the other, can hardly be considered as accidental.

My personal opinion is that, in Theory of Games and Economic Behavior, von Neumann
and Morgenstern (1944) made use of a toolkit borrowed from Dirac’s formalization of quan-
tum mechanics,19 without bothering to make this fact explicitly known either to economists
or to physicists.

The density matrix (3.3) can be rewritten in a form that will look somewhat more familiar
to us, to clarify the analogy with what economists would call expected value. Indeed, a social
scientist would write the expected state of the cat (c) as follows:

E(c)= 1

2
(d | s)+ 1

2
(a | ns) (3.4)
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Notice that the above reads the same in both disciplines, independently of whether we write
it as in (3.3) or as in (3.4), i.e., ‘with probability 1/2 I will observe a dead cat because the
cat is in fact dead (or equivalently, because the handgun shot, as the spin was positive), and
with the same probability I will observe that the cat is still alive (because the handgun did
not shoot, as the spin was negative)’. Observe that the meaning of the symbol | is exactly the
same in both cases.

As soon as the experimenter opens the box to observe the state of the system, probabilities
collapse to either zero or one, depending on whether the gun shot the cat or not – and this
will reveal ex post the spin of the photon. Consequently, the experimenter observes either ca
or cd, but surely not both states at the same time. On the contrary, as long as the experimenter
does not open the box, the two states coexist in a quantum sense.20

To conclude, I would like to stress that, when economists build up the expected value of
an agent’s payoff, they face exactly the same kind of paradox that I have illustrated above
concerning Schrödinger’s cat in the box parable. Hence, also in economics the issue is the
transition from the ex ante (quantum) prevision to the ex post (Newtonian) observation. In
both settings, the limit to our knowledge is inherently given by the indeterminacy associated
with (i) the measurement in physics and (ii) the (random) transition from a mixed strategy to
a particular pure strategy in game theory.
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I’ve been spending my money
In the old town
It’s not the same honey
When you’re not around

Philip Lynott,
Old town

Well, I haven’t written this chapter to offer you an interpretation of compulsive shopping –
which is anything but strategic, right? – but I may take Phil Lynott’s lyrics as a sort of oxy-
moronic starting point for talking about economic incentives governing market behaviour.
And, since economics is the area of the social sciences that was the first to massively adopt
game theory, I will use it as a springboard from which I will dive (and you with me) into the
wide sea of applications we are going to run across throughout the remainder of the book.
An exhaustive survey of all the possible applications of game theory to economics is well
beyond the scope of the present volume. However, I will strive to offer you a flavour of what
has been and is being done in this field, so that, hopefully, you may desire to know more,
and extend your reading outside the narrow boundaries of this book.

The structure of this chapter is threefold. Section 4.1 covers industrial economics, and
illustrates the game-theoretic approach to price competition, innovation incentives, prod-
uct differentiation and advertising, and entry barriers. These are classical topics that have
been intensively investigated with the tools of game theory. As a topping on the cake of
industrial organization, the comparatively newer issues of standardization, compatibility and
network externalities are also briefly dealt with. Section 4.2 is devoted to the analysis of some
strategic aspects of macroeconomics and macroeconomic policy, such as rules versus discre-
tion, and the coordination of monetary and fiscal policies. Last, but not least, Section 4.3
investigates the basics of the economics of natural resources and the environment.

4.1 Industrial economics

4.1.1 Prices and market shares in oligopoly

In accordance with industrial economics, we may classify a market in terms of the degree of
power enjoyed by the firms operating in it. By definition, holding monopoly power is the best
of all possible perspectives for any firm, as it implies that it will operate alone in the market,
without competitors.1 The opposite case is perfect competition, the Nirvana of economic
analysis, where infinitely many atomistic firms supply the market without the slightest degree
of control on price. In both cases, proper strategic interaction is absent. In between, there’s
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oligopoly: a market with a relatively small number of firms that are aware of each other and
exert some control on prices and market shares.

Oligopoly theory dates back to the French mathematician Cournot (1838). His model, in
its original version, is still the foundation of any course in industrial economics in schools
across the world. Cournot tells a story about two millers selling the same type of flour and
choosing simultaneously their respective production levels so as to maximize individual prof-
its, with the price being determined by the demand side of the market. In the modern jargon
of game theory introduced in Chapter 2, it is a non-cooperative variable-sum game with
imperfect, complete and symmetric information.

Almost half a century later, another French mathematician, Bertrand (1883) criticizes a
specific aspect of the work of Cournot, namely, the idea whereby firms decide quantities or
market shares. If this is the case, who sets the price? Shall we seriously think that the demand
side (i.e., consumers) will decide at what price to buy the firms’ products? Observation sug-
gests that this is (almost) never the case, says Bertrand. Thence the opposite assumption is
made that firms set prices and let consumers decide how much to buy on the basis of the
extant price lists. Much later, this critique has given rise to a sort of legend according to
which there would exist a Bertrand model, as opposed to the Cournot model. This is indeed
no more than an ex post artifact built up ad hoc on the basis of the opinion expressed by
Bertrand himself in his 1883 article.2

Be that as it may, let’s see how price competition works in a basic duopoly model. Con-
sider a market supplied by two firms that use the same technology and sell exactly the same
homogeneous good (i.e., identical soft drinks, sweaters, or cars). These assumptions are
admittedly unrealistic – and I will relax both of them in due course – but are initially adopted
for the sake of simplicity and also because they allow one to single out some basic properties
of oligopolistic interaction.

Let’s say that firms, labelled as 1 and 2, produce at the same unit cost c. The range of
admissible prices is [c, pM ], pM being monopoly price. Now suppose firm 1 sets a price
p̂1 = c + η, with η > 0 measuring the mark-up (the unit profit), and such that p̂1 belongs to
the admissible range. If the solution concept is the Nash equilibrium, is it optimal for firm
2 to set the same price, or is there a different best reply to p̂1? Quite intuitively, firm 2 will
find it optimal to choose a price p̂2 = p̂1 − ε = c +η − ε, with ε positive but arbitrarily small
(say, one cent) in such a way that:

• p̂2 ≥ c, and therefore firm 2’s profits will be positive; and
• all consumers willing to buy at p̂2 will buy from firm 2 only, since the product is

homogeneous and therefore what matters is just the (slightest) price difference.

However, ( p̂1, p̂2) cannot be a Nash equilibrium: indeed, given p̂2, it will be optimal for
firm 1 to deviate from p̂1 towards p̃1 = p̂2 − ε, as long as ε is sufficiently small to ensure
that p̃1 ≥ c. At this point firm 1 is enjoying monopoly power over this market, but again
this cannot be an equilibrium because a unilateral downward deviation is optimal for firm 2,
and so on and so forth . . . until both firms price at marginal cost, with p1 = p2 = pBN = c.
It is easily checked that no unilateral deviation from marginal cost pricing is profitable:
deviating below marginal cost would yield monopoly power, but profits would be negative;
deviating above marginal cost is pointless as the deviator would have no customers at all.3

Hence, this is the unique Bertrand–Nash equilibrium of the duopoly game with homoge-
neous goods and symmetric technologies. The bottom line of the story I’ve been telling
you is summed up in the following remark.
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REMARK 4.1 With homogeneous goods and identical technologies, the undercutting
mechanism leading to marginal cost pricing jeopardizes firms’ profits altogether and
replicate the same equilibrium outcome that one would expect to appear under perfect
competition.

This striking (and quite peculiar) result deserves a closer look. The source of marginal
cost pricing at the Bertrand–Nash equilibrium is a price war driven by the lust for monopoly
power. This is the prize that both firms are looking for when they undercut each other’s
price – sadly enough, by doing so they destroy the prize itself, and generate its opposite.
This means, of course, very good news for consumers, who may initially worry about the
undesirable consequences of strategic interaction among a small number of firms, and ulti-
mately enjoy consumption at the lowest possible price, as in their wildest dreams. For these
reasons, the Nash equilibrium outcome of the Bertrand game is traditionally known as the
Bertrand paradox. From the 1950s, this model has been considered as a theoretical explana-
tion of the self-regulating ability on the part of any given market, and it has been adopted as
a benchmark by the Chicago School in claiming that ‘two is enough for competition’. Note
that the extension to any number of firms does not modify the picture, as long as all of them
use the same technology (with the same unit cost) to supply the very same object.

This generates a fundamental question: is the Bertrand paradox credible? Or, is it realistic?
A casual look at the game reveals immediately several weaknesses. To begin with, in the real
world it is almost never the case that firms supply perfect substitutes. Goods are almost
never homogeneous, and some degree of differentiation meeting the heterogeneous tastes of
consumers is systematically adopted by firms precisely to soften price competition. And even
if tastes were the same across consumers, it would be a smart idea for firms to use intense
advertising campaigns to modify consumers’ preferences so as to persuade some consumers
that they like a product they have never thought about before.

Additionally, I would like to draw your attention to another possible modification of the
initial Bertrand set-up. It is small and obvious, but its consequences are extremely relevant
and open completely new perspectives on the way we may look at firms’ behaviour and
incentives. Simply suppose the two firms have different unit costs, with c2 > c1. That is,
firm 1 is more efficient than firm 2. If so, then any price p1 ∈ (c1, c2) grants firm 1 monopoly
power with strictly positive profits. In fact, the optimal monopoly price in this situation will
be p1 = c2 − ε, because then firm 2 cannot undercut firm 1 without incurring a loss. Again,
this result is also replicable for any number of firms larger than two: the most efficient one
in the industry will surely become a monopolist. Price competition melts away in the face of
any technological gap across any population of firms selling the same good and using prices
as their market variables. This prompts for the analysis of the sources of technical progress,
which is exogenous to the Bertrand model as such, but may cause the latter to collapse
into a monopoly, i.e., into something that is no longer a game. The relationship between
market power and innovation incentives is a long-standing issue in industrial economics,
with many relevant implications in terms of policy and economic growth. I’ll come back to
these extensions in the remainder of this chapter. Again on costs, a serious drawback of the
Bertrand game is that firms are supposed to operate without capacity constraints; or, if these
are present, they are so innocuous that the cost of building up productive capacity is not even
accounted for, and what matters is the unit cost only. If, a bit more realistically, each firm has
a plant of size k and has to pay a rental price of capital r per unit of installed capacity, then
pricing at pBN = c would indeed kill both firms, as neither of them would be able to pay the
cost of capacity rk.
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Another delicate issue is the following. The Bertrand model is a one-shot game replicating
perfect competition because of a price war that firms would possibly learn to avoid by taking
into consideration that their interaction will repeat over time, possibly over an arbitrarily
long time horizon. The ultimate outcome of such awareness is a harmful cartel with firms
replicating the behaviour of a monopolist – exactly the opposite of the reassuring Bertrand
paradox. This is the topic treated in the next chapter, where I will also briefly illustrate the
essence of the Cournot (1838) model.

To conclude this overview of the price competition oligopoly game à la Bertrand, it is
interesting to note that it can be interpreted as an auction. Usually, the standard mechanism
observed at auction houses like Sotheby’s or on eBay is that of ascending bids. The object
being auctioned goes to the agent who has placed the highest bid. Depending upon the rules
of the auction, the winner may or may not pay that highest bid. In the so-called first-price
(or English) auction, the winner indeed pays the highest bid he/she has placed. In the second-
price (or Vickrey4) auction, he/she will only pay the second highest bid, plus possibly a
step included at the outset in the auction rules and known a priori to everybody (like on
eBay). The Bertrand game looks pretty much like an auction with descending bids: firms
offer descending prices to win the object of the auction, namely, monopoly power over the
market. Depending on the cost structure of the industry, this auction will be a first- or second-
price one. Typically, with fully symmetric firms operating at the same efficiency level, the
game is a first-price auction, where no firm is able to win because of the paradox, while
any asymmetric game with different efficiency levels is a second-price auction, where the
firm endowed with the most efficient technology gets monopoly power. Auctions will prove
very useful in explaining several phenomena we will run across in this chapter as well as in
Chapter 7.

4.1.2 Innovation and advertising

Economic growth is largely driven by technical progress generated by investments in R&D,
and therefore the analysis of firms’ incentives to generate innovations is a very relevant task
with the highest priority on the industrial economists’ agenda.

The output of R&D activities can be either a process innovation or a product innovation.
Process innovation identifies a form of technical progress whereby firms continue to produce
the existing goods, but do so at a lower cost. Instead, product innovation yields new varieties
of existing goods, or completely new commodities that consumers have never seen before,
given the existing technology. Of course, common sense suggests that, in many (or most)
cases, the two types of innovation pop up hand in hand. One such example is the introduction
of compact disk (CD) players, which replaced turntables worldwide in the early 1980s: a CD
player is a new product that incorporates a new technology with its own specific production
costs. Yet, for the sake of analytical tractability, most of the extant analysis of this issues
in modern industrial economics treats the two types of innovation separately. In this section,
I will give you a flavour of both, one at a time, and also, tentatively, a sketch of their interplay
in a single model.

Comparatively speaking, the first and foremost aspect that has attracted the attention of
professional researchers in this area is the relationship between market power and inno-
vation incentives. The related debate has been triggered by Schumpeter (1934, 1942) with
the so-called Schumpeterian hypothesis, whereby innovation incentives are increasing in the
degree of market power: R&D activity needs funding, so what could possibly outperform
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monopoly in this respect? The cornerstone of the Schumpeterian argument is that a monopo-
list can do at least as well as any other market form, that is, the profits of a firm standing alone
on the marketplace are at least as high as the collective profits of any number of oligopolistic
or perfectly competitive firms. Quite compelling, isn’t it? So much so that the Schumpeterian
claim remained unchallenged for a long time.

Later, Arrow (1962) proposed an opposite view of the matter, based on the idea that small
firms operating in competitive environments could actually strive harder than a monopolist
to attain any given innovation. The bottom line of the Arrovian position can be summarized
as follows. Let’s suppose there exists a patent law granting an innovator the property rights
on a new product or technology, as happens in virtually any economic system on the planet.
A perfectly competitive firm is small, gets zero profits by definition and is just one out of
a large number of similar productive units. Hence, it has no internal funding sources. How-
ever, it can get indebted with banks to raise the necessary resources for R&D, on the basis of
the prize accruing to the winner of the innovation race possibly involving a large number of
competitors. The prize is the flow of profits the winner will obtain after patenting the innova-
tion. Now note that a perfectly competitive firm patenting an innovation jumps abruptly from
zero to monopoly profits, while a monopoly firm patenting the same innovation just replaces
itself. This feature of the problem, which is known as the replacement effect, speaks in favour
of small competitive firms and against monopolistic ones, and therefore the Arrovian posi-
tion is that the former should be more innovative than the latter. A simple game, based upon
a modern revisitation of their debate (Gilbert and Newbery, 1982 and Reinganum, 1983),
can be constructed to illustrate the two opposite views of Schumpeter and Arrow.

To simplify the picture, there will be only two players: a monopolist and a potential
entrant, the latter firm being allowed to enter the market if and only if it gets the innova-
tion. Also assume, for instance, that the innovation at stake takes the form of a new product
that does not replace completely the existing one. An appropriate example could be that of
solid-state amplifiers for domestic hi-fi sets, which were introduced in the late 1960s with-
out eliminating tube amps.5 Before the innovation is adopted by anyone, the market is a
monopoly with the incumbent selling the ‘old’ product, the resulting profits being πM(old).
The innovation game can be illustrated as an auction. A third subject (the real innovator)
is a genius (say, Albert Einstein) with many striking ideas but no productive facilities at all.
Hence, having patented the new product, Albert decides to auction the patent, the monopolist
and the potential entrant being invited to bid.

The maximum bid the incumbent can place is measured by the amount of monopoly profits
it can attain after winning the auction by marketing the new product together with the old one,
πM(old + new). If the incumbent does not win the auction, it gets a duopoly profit πD(old)

by continuing to sell the old product. On the other hand, the maximum bid the outsider can
afford is the amount of duopoly profits generated by the innovation, πD(new). According to
Gilbert and Newbery (1982), the comparative incentives of the two firms are summarized by
the following inequality:

πM(old + new)−πD(old)>πD(new) (4.1)

or, equivalently,

πM(old + new)>πD(old)+πD(new) (4.2)

Condition (4.1) states that the incumbent will outbid the potential entrant (and therefore
monopoly will persist) because the monopoly profits generated by the innovation – joint
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with the old good – are larger than the sum of duopoly profits with one firm supplying
the old product and the other supplying the new one – which appears explicitly in (4.2).
In a nutshell, this is the Schumpeterian interpretation of an innovation game: given that a
monopolist can always at least replicate the performance of any industry with at least two
firms, at the Nash equilibrium of the auction the incumbent outbids the entrant and the market
remains a monopoly.

The Arrovian version relies on the fact that there is an alternative and equally plausible
way of measuring firms’ relative incentives to bid (or to invest). According to Reinganum
(1983), one should work out the game anew using the same basic elements (profits), in such a
way that either firm’s incentive is given by the difference between ex ante and ex post profits.
The profit increase accruing to the incumbent replacing itself is πM(new) − πM(old), while
that accruing to the potential entrant starting from scratch is πD(new) − 0. Comparing these
incremental profits yields:

πM(old + new)−πM(old)
?
≷πD(new) (4.3)

and inequality (4.3) can take either sign, depending on the ‘size’ of the innovation (for
instance, product quality, durability, etc.).

It is worth stressing that the left-hand side of (4.3) is a direct measure of the replacement
effect, and may speak in favour of the entrant. If it does, then the incumbent rests on its
laurels; as a result, the Nash equilibrium of this auction game is that the entrant outbids the
incumbent and the former monopoly becomes a duopoly.

The same framework can be quickly adapted to illustrate the incentives for process inno-
vation, in the form of a decrease in unit production costs. Players are the same as above,
the incumbent, a potential entrant, and our friend Albert. The product offered to consumers
is homogeneous, but its unit cost can be reduced from c̄ to c < c̄ via a non-drastic inno-
vation auctioned by Albert. The Schumpeterian view à la Gilbert and Newbery (1982) is
summarized by two conditions, which replace (4.1) and (4.2):

πM(c)−πD(c̄)>πD(c) (4.4)

and

πM(c)>πD(c̄)+πD(c) (4.5)

Once again, monopoly persists because the monopoly profits generated by the new techno-
logy are strictly higher than the total profits of a duopoly in which one firm is endowed with
an inferior technology.

The Arrovian perspective à la Reinganum (1983) is instead based on the equivalent
of (4.3):

πM(c)−πM(c̄)
?
≷πD(c) (4.6)

whose sign may indeed flip over depending on the difference between old and new unit
production costs.
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We can sum up all this in the following remark.

REMARK 4.2 The relationship between market power and innovation is ambiguous. If the
incentive is measured by the profit perspective associated to the innovation, big firms will
systematically outperform small ones in R&D races. If instead the incentive is based on
incremental profits, then the opposite may apply.

A relevant corollary to this discussion is the role of patent laws. It is commonly recognized
that a patent law is needed to safeguard the firms’ incentives to carry out R&D investments,
as in the absence of patentability any innovation could be immediately copied without legal
consequences – the only consequence being that the innovating firm would go bankrupt as it
would be unable to cover the cost of the investment. Hence, the monopoly rights granted by
any patent law are seen as a reward for innovation and a stimulus to technical progress.6 Yet,
opinions are not unanimous on this point, for more than one reason. First of all, antitrust laws
speak clearly against monopoly power. When we see how cartels operate (in Chapter 5), this
issue will pop up again in more detailed terms. Second, the design of patent coverage is a
delicate exercise, centred upon the most delicate trade-off between static and dynamic effi-
ciency. In summary, static efficiency is attained when the welfare generated by an industry
is maximized, and this happens when – bluntly speaking – all firms may access the same
knowledge and technology and the degree of competition is satisfactorily high. Ideally, it is
so high that the equilibrium price falls to marginal cost and the industry is perfectly com-
petitive. If we want an economy to attain dynamic efficiency through a fast innovation pace,
we have to accept the idea that monopolies will prevail for non-negligible time spans after
any innovations have been patented. Shortening the patent length hinders (respectively, fos-
ters) dynamic (respectively, static) efficiency, and conversely. That is, we cannot get two
eggs in one basket. Third, the protection of property rights might be in open contrast with
our concern about the health and ultimately the survival of entire nations. The possibility
of allowing innovations to be copied freely is a hot issue in the pharmaceutical industry, in
particular when it comes to antiviral drugs – for instance, for the treatment of HIV. Is the
standard property right argument a sound one, in this respect? I let you judge the matter for
yourself.

R&D activity poses some serious policy issues that governments have to deal with care-
fully. One such aspect is the possibility of subsidizing firms’ innovative efforts using public
funds.7 This matter can be illustrated by resorting to a 2×2 game between two firms, 1 and 2,
as in Matrix 4.1, describing the situation arising in the absence of subsidies to either firm.
Strategies c and nc stand for to compete and not to compete, respectively.

The game has a ‘chicken-like’ structure, with two asymmetric Nash equilibria along
the secondary diagonal (and of course also an equilibrium in mixed strategies). Therefore,
a priori, one remains in doubt as to the actual outcome of strategic interaction. What if one of
the two firms has an advantage over the rival, perhaps due to a subsidy from its government?
Suppose this happens to firm 2, which receives an amount equal to 15 from its government in

Matrix 4.1 The game without
subsidies

2
c nc

1 c −10;−10 30;0
nc 0;30 0;0
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Matrix 4.2 The game with sub-
sidies to firm 2

2
c nc

1 c −10;5 30;0
nc 0;45 0;0

Matrix 4.3 The game with sym-
metric subsidies

2
c nc

1 c 5;5 45;0
nc 0;45 0;0

order to compete against firm 1 (if firm 2 decides not to compete, then the subsidy vanishes:
therefore firm 2’s payoff is modified only along the first column). Consequently, the game
takes the form of Matrix 4.2.

The presence of a subsidy entails that c becomes a dominant strategy for firm 2, and natu-
rally firm 1 is aware of that. The resulting process of iterated deletion of dominated strategy
selects (nc, c) as the unique equilibrium of Matrix 4.2. That is, the strategic advantage arti-
ficially created through the subsidy policy drives the game towards an equilibrium where
the subsidized firm acquires monopoly power. Of course firm 1 may invoke the adoption of
an analogous measure on the part of its own government, whereby both firms’ activities are
equally subsidized with public money. The outcome is illustrated in Matrix 4.3.

This game can be solved in dominant strategies, yielding (c, c) as the unique equilibrium
– which, by the way, is also Pareto-efficient from the firms’ viewpoint. Whether this holds
as well for both countries at an aggregate is a delicate issue, as the answer requires a careful
evaluation of the pros and cons of the subsidy policy in terms of social welfare. For more on
this side of the issue, see Krugman and Obstfeld (1988).

4.1.3 Product differentiation

You can have it any color you want,
as long as it’s black

Henry Ford

We have just seen that, in the extreme case of homogeneous goods, price competition drives
profits to zero. Hence, there arises an obvious incentive for firms to differentiate their goods
in order to sustain prices above unit costs. This is a comparatively old idea in industrial eco-
nomics, dating back at least to Hotelling (1929). Here I will lay out a simple game inspired
to the original Hotelling model and its updated version due to d’Aspremont et al. (1979).

The space of all possible product varieties is a linear segment whose length can be set
equal to one without loss of generality. The segment, for instance, may measure the amount
of sugar in a generic soft drink. Along the segment is uniformly distributed a population
of consumers, one at every point along it. The position of each consumer reveals his/her
preferences as to the main feature of the good being traded in this market (sticking to the
aforementioned example, the consumer located at 0 prefers Cola Zero, while the consumer
at 1 prefers the usual one). The total mass of consumers is therefore equal to one. Two
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0 11/2

Figure 4.1 The Hotelling segment

single-product firms, 1 and 2, compete in this market, in the following way. Firms have the
same technology, again measured by the symmetric unit cost c. They have to choose their
respective locations x1 and x2 non-cooperatively, under complete, symmetric and imperfect
information (i.e., simultaneously) knowing that market coverage is full (that is, every con-
sumer will buy a can of soft drink) and the set of admissible locations is {0,1/2} for 1 and
{1/2,1} for 2. Moreover, firms also know that the price (as well as the resulting price–cost
margin per unit) is increasing in the amount of product differentiation x2 − x1:

p1 = p2 = c + θ(x2 − x1) (4.7)

The above pricing rule, joint with firms’ locations, will determine market shares and pro-
fits. Let’s look at each admissible outcome in turn. The first possibility is that both firms
locate in the middle of the segment, with x1 = x2 = 1/2. This causes both prices to fall upon
unit cost c because product differentiation is absent altogether, and therefore profits will be
nil for the very same reason as in the Bertrand game. The second scenario is one in which
firms locate at the opposite ends of the spectrum of varieties, with x1 = 0 and x2 = 1. In such
a case, the resulting prices will be pi = c + θ , i = 1,2. Market demand will split evenly as a
consequence of maximum differentiation: all consumers preferring low-sugar drinks – those
located between 0 and 1/2 – will patronize firm 1, while those located between 1/2 and 1
will buy from firm 2 (the consumer located at 1/2 will toss a coin to decide). The resulting
profits are again symmetric but positive, amounting to πi (0,1) = θ/2. The last case is that
in which one firm locates at 1/2 and the other locates at one of the endpoints, either 0 or 1.
Suppose firm 1 chooses x1 = 0 and firm 2 chooses x2 = 1/2. Prices will be pi = c + θ/2.

Now note that every consumer between 1/2 and 1 will buy from firm 2, as will all of the
consumers between 1/4 and 1/2, because all of them prefer variety 2 to variety 1 at equal
prices. Only those located between 0 and 1/4 will become firm 1’s customers – the consumer
at 1/4 will be indifferent. This asymmetry in market shares determines the following profits:

π1

(
0,

1

2

)
= θ

8
, π2

(
0,

1

2

)
= 3θ

8
(4.8)

The opposite case where firm 1 locates in the middle and firm 2 locates at 1 yields:

π1

(
1

2
,1

)
= 3θ

8
, π2

(
1

2
,1

)
= θ

8
(4.9)

with the indifferent consumer at 3/4. The linear space of product characteristics with the
three admissible firms’ locations is represented in Figure 4.1.

The outcome of the strategic interplay between firms can be investigated observing the
2 × 2 in Matrix 4.4. The game is symmetric along the main diagonal, so that we may take
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Matrix 4.4 Product differentiation
in the Hotelling game

2
1 1/2

1 0 θ/2; θ/2 θ/8;3θ/8
1/2 3θ/8; θ/8 0;0

either firm’s viewpoint knowing in advance that an analogous interpretation will apply to the
rival as well.

Given that θ/2 > 3θ/8 and θ/8 > 0, the outcome (0,1) emerges as the unique Nash equi-
librium of the game, at the intersection of strictly dominant strategies. The associated degree
of differentiation is maximum, with prices well above unit production costs. This result,
due to d’Aspremont et al. (1979), is one of the cornerstones of the modern theory of indus-
trial organization, and can be understood by looking at the interplay between two opposite
forces driving firms’ location choices. The first is labelled as the competitive or strategic
effect: firms strive to increase product differentiation, as this softens price competition. The
second is the demand effect: each firm would like to capture the preference of the median
consumer at 1/2 (the ‘middleman’), as this expands considerably the firms’ market share, all
else being equal. Overall, the balance speaks in favour of the strategic effect, which plays a
major role and shapes the equilibrium configuration of the industry so as to yield maximum
differentiation.

The above discussion can be usefully summarized in the following remark.

REMARK 4.3 Product differentiation softens price competition. Hence, firms endowed
with analogous technologies will exploit product differentiation in order to sustain prices
above unit production costs.

Note that the strategic choice of product varieties is not taken to meet consumer prefer-
ences. It’s actually the other way around: any heterogeneity in consumer preferences will
be exploited by firms to extract surplus from consumers. In this respect, an even sharper
comment could be that, if consumer preferences are not heterogeneous, then firms may use
advertising to artificially create some profitable heterogeneity.

This model can be modified in several directions to account for specific features of indus-
tries and strategic interactions among firms operating in such industries. A useful extension
is loosely based on Gallini (1992). What if firms enter the market sequentially, perhaps due to
sequential innovations? First of all, relax the above assumption concerning admissible loca-
tions, and admit instead that xi ∈ {0,1/2,1} for both firms. Suppose firm 1 innovates first.
Say, firm 1 is DrinkThis, which can supply the market with a single variety of its soft drink,
under full market coverage. If it anticipates the entry of a competitor – TasteThat – at a later
date, DrinkThis will choose to locate at one of the endpoints in order to allow the second firm
to differentiate its product from ‘Fizz’ and avoid tough price competition. In fact, the earliest
variety of Fizz is full of sugar; therefore, we may set xDT =1, the subscript DT standing for
DrinkThis. As everybody knows, Coca Cola never patented Coke, its exact recipe being ‘pro-
tected’ through secrecy. This is a crucial feature that deserves a careful explanation. Given
that any patent elapses at some point, existing products can indeed be copied by competitors
as soon as they are no longer protected by patents, and the accessibility of deposited patents
makes any product’s feature publicly known as soon as the patents are conceded to innova-
tors. If, instead, a product is never patented, and the veil of secrecy around it is thick enough,
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competitors may never get to know exactly how it is being manufactured. The downside of
secrecy is that, if rival firms can work out a more or less perfect copy, they can market it
without any legal consequences.

Having said that, we may turn our attention to the strategy of TasteThat, which may face
two possible scenarios: the first is one where secrecy doesn’t work, and TasteThat success-
fully discovers the correct proportions of ingredients in Fizz; the second is the opposite,
where the veil of secrecy has remained an impassable barrier for TasteThat, whose only
alternative is to market a differentiated soft drink. If TasteThat cannot discover the exact
recipe used by DrinkThis, then obviously the only equilibrium entails maximum differenti-
ation. If instead TasteThat unveils the secrets of their rival, then the crucial question is this:
Provided one is able to copy the rival’s goods, is it wise to copy a successful product? Judging
from the Hotelling model, the answer is ‘no’, as imitation triggers a price war that ultimately
drives profits to zero. This, however, is conditional on the relative productive efficiency of
the two firms. If the unit production costs of DrinkThis and TasteThat are exactly the same,
then the sequential entry game along the Hotelling segment has a unique equilibrium in
pure strategies, with DrinkThis entering first at 1 and TasteThat subsequently locating at the
opposite endpoint. If instead the time interval is fruitfully exploited by TasteThat to carry out
some R&D effort for process innovation lowering the unit production cost, then TasteThat
will indeed profit from locating at 1, replicating Fizz exactly and stealing all of DrinkThis’s
customers with an identical product sold at a slightly lower price.

Advertising campaigns are very familiar to all of us, at least superficially. Firms happen to
invest huge sums in ads on the TV, in magazines, newspapers and on the web. Why do they?
OK, the obvious answer is that they want to convince consumers to purchase their prod-
ucts. But this prompts other and more subtle questions that need accurate and less obvious
answers. Should we take the messages conveyed by ads at face value? That is, are firms sys-
tematically telling the truth about their products (and their rivals’ products)? Is the amount of
money invested in advertising by any given firm or industry too high or too low as compared
to what would be socially optimal? Advertising can be either informative or persuasive. It is
informative when it tells consumers that a given product exists, has a given set of features
and is sold at a certain price. It is persuasive when it is aimed explicitly at convincing a
consumer already informed about the product features to buy such a product, or to buy it at a
higher price. It goes without saying that, quite often, ads are both informative and persuasive
at the same time. Additionally, advertising may also be comparative, something like ‘buy my
product because it’s better than the rival firms’ alternatives’ for some reasons. This type of
advertising is often prohibited – although it is not in electoral campaigns (see Chapter 6).

An advertising game based on the Hotelling model can be usefully illustrated here. Firms,
by assumption, are in 0 and 1. The game is one in which advertising modifies market shares,
all else being equal (including prices, corresponding to pi = c + θ as above). Let’s say that
advertising entails a fixed cost F, so that: (i) if both firms invest in advertising campaigns,
market shares are unmodified, 1/2 each; (ii) the same happens if neither firm invests; while
(iii) if one invests and the other does not, the former becomes a monopolist and the latter is
thrown out of the market with zero demand. The game is represented in Matrix 4.5.

Now, if F ∈ (0, θ/2) – which is needed to ensure non-negative profits throughout – then
Matrix 4.5 is an obvious prisoners’ dilemma with (F, F) as the unique Nash equilibrium
(in dominant strategies). In order to keep a positive market share, each firm invests in adver-
tising, whereby the industry clearly overinvests as a result of individual incentives. Market
shares are exactly the same as with no advertising at all, and the costs borne by the whole
industry to set up and carry out the advertising campaign is entirely sunk.
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Matrix 4.5 Advertising for market shares
in the Hotelling model

2
0 F

1 0 θ/2; θ/2 0; θ − F
F θ − F;0 θ/2 − F; θ/2 − F

4.1.4 Entry barriers

The R&D game describing an auction for a process or product innovation can also be inter-
preted as an entry game, where the incumbent may create a strategic entry barrier by winning
the auction. Barriers to entry can be either natural or artificial, i.e., strategic. Natural barriers
are given, for instance, by the initial investment that a firm has to undertake to enter a market,
and clearly small newborn firms are disadvantaged compared to big ones. Artificial barriers
may be build up strategically by incumbent firms in the absence of natural ones, to prevent
further entries.

The analysis of entry barriers is a key aspect of industrial economics, dating back to Bain
(1956) and Sylos-Labini (1962). Their approach relied on the possibility of an incumbent
retaining monopoly power thanks to the so-called Sylos postulate, whose spirit can be sum-
marized as follows. Examine a monopoly threatened by a potential entrant. The incumbent
firm may announce that it will expand production to such an extent that it will be impossi-
ble for the entrant to obtain positive profits. The postulate states that, in the case of entry,
the incumbent will indeed stick to the announcement and increase its output to annihilate
the entrant. On this basis, the potential entrant will never materialize and the incumbent
will remain a monopolist. From the late 1970s, game theory has been used to criticize the
Sylos postulate and shed some new light on its weaknesses. To see how this works, we may
examine a game due to Dixit (1979) and described by Matrix 4.6.

Players are an entrant, E , and an incumbent, I (the current monopolist). They are endowed
with the same technology and sell substitute (but not necessarily identical) goods. E may
choose whether to enter (e) or not to enter (ne), while I may either accommodate entry (a)
or fight ( f ). The outcome (e,a) describes a duopoly with some positive profits equal to πM

for both firms (for instance, thanks to some degree of product differentiation). In (e, f ) we
observe a price war triggered by the incumbent and provoking symmetric losses (amounting,
for instance, to a portion γ rk, with γ positive but lower than one, of the fixed costs that both
firms have to bear in order to set up their respective plants). Finally, if E does not enter,
the industry remains in a monopoly regime and the distinction between a and f becomes
immaterial to the incumbent as there is no strategic interaction at all.

This game has two Nash equilibria in pure strategies, (e,a) and (ne, f ), but only the first
is credible, since the second relies on the adoption of strategy c that is weakly dominated
for the incumbent. Indeed, any preliminary announcement by I to the effect that the incum-
bent will fight entry is not credible. Accordingly, E will enter and a duopoly will obtain.

Matrix 4.6 The entry game

I
a f

E e πd;πd −γ rk;−γ rk
ne 0;πM 0;πM
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E

I

e ne

a f

πd , πd −γ rk, −γ rk

0, πM

Figure 4.2 The entry game with sequential moves

Facing the fait accompli, the incumbent will rationally have no interest in sticking to the ini-
tial announcement. The outcome (e,a), besides qualifying as a Nash equilibrium, is also in
weakly dominant strategies and, if the game is played sequentially (i.e., under perfect infor-
mation) with E moving first, it is also subgame perfect: given that E correctly anticipates
the incumbent’s best reply, I ’s bluff is easy to unveil. The analysis of sequential play can be
done by looking at the tree in Figure 4.2.

The truncated subgame on the right-hand side indicates that the absence of entry
eliminates strategic interaction. Hence, one has to consider the left subgame only. This
materializes only after entry, in which case the incumbent prefers a profitable duopoly to
a harmful war. Anticipating this fact, the outsider will indeed enter, and drive the industry
towards the subgame perfect duopoly equilibrium, irrespective of whether there has been
an initial announcement by the incumbent to the effect that entry would meet opposition.
Fighting – or announcing to be willing to fight – is not credible, as it is not part of the sub-
game perfect equilibrium. The bottom line of this game is that announcing something that
is subgame perfect equilibrium is not necessary, as the rival operates under full information;
otherwise, announcing a non-credible behaviour is just hot air and therefore it’s a waste of
time.8 The following remark sums this up in a nutshell.

REMARK 4.4 In one-shot games, one shall not expect to observe artificial entry barriers
based on aggressive pricing.

This is not the last word on entry barriers, though: we will revisit this game in the next
chapter, where a repeated entry game based on Matrix 4.6 will reveal that the incumbent may
find it convenient to fight in order to remain a monopolist. That is, time heals wounds – and
also allows an incumbent firm to recover losses.

4.1.5 Networks, standardization and compatibility

An externality is an effect of individual behaviour that agents do not take into account
when deciding a line of action. In the case of firms, an externality is a consequence of
firms’ strategies that is not reflected in prices and profits. The environmental effects and the
depletion of natural resources caused by industrial activities and consumption are a typical
example. We will come to these issues in the next section. The present section is for another
phenomenon that you are probably acquainted with although you may never have interpreted
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it in the way industrial economists do. Nowadays, many markets and products are charac-
terized by something called network externality. This label refers to the fact that people buy
products or use services, producing both an intrinsic utility and an additional utility that
increases with the number of people purchasing the same good or service. For instance, the
laptop I’m using to write this book has an intrinsic utility as a typewriter, but also yields a
positive network externality, as it allows me to connect to the web and do some Googling or
to email my friends all over the planet.9 Instead, my office desk has exclusively an intrinsic
utility. Interestingly, there are goods that yield no intrinsic utility, but exclusively a network
effect. An old-style phone would be useless to its owner, if the latter were the only person to
own a telephone.10

The computer industry is perhaps the best example of a market where large-scale network
externalities operate. And they are not the only relevant feature of the environment in which
PCs, laptops and notebooks are connected through the web: standardization and compatibil-
ity also play a major role. Both aspects have much to do with hardware technology and the
features of software – a sophisticated but intuitively clear form of product differentiation. As
everybody knows, the computer industry is characterized by the presence of Apple with its
own specific software, on one side, and IBM-compatible machines with Microsoft software,
on the other.11 They are neither standardized nor fully compatible, although the situation
has improved a lot over the decades. I’ve never been an Apple user, at least not on a regu-
lar basis, because I’ve always studied and worked in places endowed with IBM-compatible
stuff. Some 20 years ago, it would have been impossible or very difficult for me to read
a document written using an Apple machine – and conversely for an Apple user trying to
decode or convert a document produced on IBM-compatible hardware. Nowadays, it can be
done in both directions with reasonable if not complete confidence. These considerations
raise two related questions: (i) Why is the computer industry not using the same standard?
(ii) Would it be privately (i.e., for firms) and socially optimal to adopt the same standard? The
answer to the first question is that the network of people using IBM-like hardware reached
a critical mass before the rival network did. Network externalities work through a band-
wagon effect, whereby any new user decides which network to join on the basis of relative
sizes, as the additional utility generated by the network is directly proportional to the number
of people connected to it. The second question can be addressed using a couple of simple
games. Matrix 4.7 describes the non-cooperative interplay between two firms, 1 and 2, using
possibly different standards, A and B, with B being characterized by a higher intrinsic qual-
ity as compared to A. Information is complete, symmetric and imperfect. The problem is
that firms do not internalize the externality – they only internalize profits, the latter being
affected by product differentiation. Hence, the game presents two Nash equilibria along the
secondary diagonal.

The consumers’ standpoint is illustrated in Matrix 4.8, which exhibits the typical fea-
tures of a pure coordination game with two Pareto-rankable Nash equilibria along the main

Matrix 4.7 The compatibility
game

2
A B

1 A 10;10 40;80
B 80;40 30;30
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Matrix 4.8 Consumers’ view
on compatibility

2
A B

1 A 20;20 10;15
B 15;10 70;70

diagonal. The standardization of the industry is always preferable to the lack of standardiza-
tion, and of course standardization on B is socially efficient. But this is not in the hands of
consumers, alas.

The same problem can be investigated in a slightly more sophisticated model, where the
quality differential separating the two standards appears explicitly. For the sake of simplicity,
let’s suppose that the population of consumers is partitioned into two groups, one gathering
type-H consumers, the other gathering type-L consumers. The size of group H is MH ,

while that of group L is ML , with MH + ML = 1. The market is being supplied by two
firms, H and L , each selling a standard of a given quality level, θH ≥ θL . As in the Hotelling
game, full market coverage prevails, so that each consumer buys one unit of the product,
from one of the two firms. The two standards are sold at prices pH ≥ pL . Market shares are,
respectively, qH and qL , with qH + qL = 1. That is, everybody buys a unit, but in principle
a type-H consumer may happen to patronize the low-quality standard (and conversely), and
therefore the equalities qH = MH and qL = ML do not necessarily hold. This will depend
upon quality and price differentials and the network externality. At this point, a simple and
useful definition can be introduced.

DEFINITION 4.1 The industry is standardized on i = H, L if all consumers patronize firm i,
i.e., if qi = MH + ML and therefore q j = 0, j 	= i.

In any other case, we may simply say that the industry is not standardized. Observe that
standardization (or the lack thereof) is essentially determined by the distribution of demand.
Accordingly, a crucial step is to describe consumer preferences in detail.

Define by Ui j the net utility of a type-i consumer buying a unit of the product whose
quality standard is j. Indices i and j may or may not coincide. Also assume that the network
externality is group-specific: sticking to the computer industry example, this amounts to
saying that any Apple (IBM) user communicates with other Apple (IBM) users, but not to
IBM (Apple) users. If a type-H consumer buys standard H, the resulting net utility is

UH H = θH − pH + qH (4.10)

where quantity qH measures the network externality, whose maximum size is equal to one
when the market is standardized. If instead the same consumer chooses the low-quality
alternative, net utility amounts to

UH L = θL − pL + qL − δ (4.11)

where parameter δ represents a disutility caused by the fact that our consumer belongs to
group H but, for some reason, is buying standard L .12 Since this disutility is in fact equiv-
alent to a reduction in the network effect, a legitimate assumption is δ ∈ [0,1]. Similarly, a
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type-L consumer faces the following alternatives:

UL L = θL − pL + qL (4.12)

UL H = θH − pH + qH − δ (4.13)

Now, everybody prefers standard H if the following condition holds:

θH − pH + 1 − δ > θL − pL (4.14)

The left-hand side of (4.14) measures the utility that a type-L consumer gets from buying
standard H when everybody else does likewise: the network externality is maximized but
diminished by the amount δ. The right-hand side measures the utility accruing to the same
consumer as a result of buying standard L when he/she is the only consumer to patronize
the inferior standard: in such a case there is no network externality at all, but the consumer
doesn’t have to bear the disutility δ. If (4.14) is satisfied, then the unilateral deviation from
standard H to standard L is not convenient for a type-L consumer,13 and therefore, a fortiori,
it isn’t either for a type-H consumer. Consequently, all consumers purchase the high-quality
standard. It is worth noting that, in the limit case in which the two standards are sold at the
same unit price (pH = pL ), the above inequality would simplify to 1 − δ > θL − θH , which
is surely true for all admissible levels of {θH , θL , δ}.

Similarly, in order for all consumers to prefer standard L , it must be true that a unilateral
deviation from L to H does not look appealing to a type-H consumer:

θL − pL + 1 − δ > θH − pH (4.15)

Conditions (4.14) and (4.15) can be appropriately rewritten to show the degree of differenti-
ation 
θ = θH − θL on the one hand, and the price differential 
p = pH − pL on the other.
From (4.14) one obtains


θ >
p − 1 + δ (4.16)

while (4.15) yields


θ <
p + 1 − δ (4.17)

Given that


p + 1 − δ >
p − 1 + δ for all δ ∈ [0,1] (4.18)

the discussion carried out so far implies the following result.

REMARK 4.5 If


θ ∈ (
p − 1 + δ,
p + 1 − δ)

the industry may standardize on H or L , alternatively.
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Figure 4.3 Quality and standardization

That is to say, if the quality differential takes intermediate values, then the market may
sustain a single standard, but not necessarily the high-quality one. The above result can be
translated into a more intuitive picture, as in Figure 4.3.

The intermediate region corresponds to the outcome spelled out in Remark 4.4. The left
interval is one where only standardization on L is possible, due to a low degree of quality
differentiation. Finally, in the right interval, quality differentiation is so high that the industry
may standardize only on H .

4.2 Monetary and fiscal policies
So far we have dwelled upon games in industrial economics, a sub-field of microeconomics.
However, game theory has been extensively applied to macroeconomics as well. An obvious
area of interest, in this respect, is that of economic policy. Essentially, the latter has a twofold
nature: monetary policy is the instrument for stabilizing prices (inflation), while fiscal policy
is aimed at stabilizing aggregate demand (employment and income). The first is delegated
to central bankers, while the second is manoeuvred by finance ministers, and ideally these
policy-makers should (i) stick to their targets mandatorily, and (ii) coordinate their respective
decisions to achieve Pareto-optimal outcomes for the economic system (say, a country or a
group of countries, like the EU) as a whole.

From the point of view of the private sector (households, workers, etc.), monetary and fis-
cal policies exert their effects on employment, disposable income, and consumption patterns.
Hence, in order to understand the nature and consequences of economic policy agendas, it is
fair to set out with simple games between individuals taking monetary and fiscal stances as
exogenously given. This approach to the problem explains the microeconomic foundations
for the aggregate behaviour and performance of large economic systems.

4.2.1 Paying taxes

The avoidance of taxes is the only intellectual
pursuit that still carries any reward.

John Maynard Keynes

The following game has much in common with the very first one you saw at the beginning
of this book, in Matrix 2.1. The version of the game you see in Matrix 4.9 has the very same
structure, only slightly adapted so as to tell a story about the private provision of public
goods. Players are two individuals or households, which may either pay (p) or evade (e)
income taxes. The latter are to be invested in a public good (a hospital or a highway). The
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Matrix 4.9 The private provision of public goods

2
p e

1 p 100 + y − t;100 + y − t 100 + y − t − ε;100 + y
e 100 + y;100 + y − t − ε y; y

resulting amount of public good is independent of the amount of money raised through tax-
ation, and, by definition of public good, the hospital or highway is accessible to both players
alike, irrespective of whether both contributed to its construction or just one did. However,
being the only contributor involves some disutility associated with the fact that one dislikes
unilateral tax evasion. To fix ideas, let’s say that gross income per capita is y, the amount of
taxes is t per head, and the value that each player attaches to the public good is 100. It is rea-
sonable to assume that 100 > y > t . Disliking unilateral tax evasion brings about a decrease
in utility equal to ε.

Since 100 + y − t < 100 + y, there exists a strict incentive for each player to evade, pro-
vided the other player is paying taxes. Therefore, (p, p) cannot be a Nash equilibrium. This
prompts the investigation of an asymmetric outcome: that is, can this game have a chicken-
like structure? Suppose player 1 chooses e and player 2 chooses p. Is there an incentive for
player 2 to unilaterally deviate from p to e? This depends on the relative size of y com-
pared with 100 + y − t − ε. In particular, if ε is large enough to yield 100 + y − t − ε < y,

or equivalently 100 − t − ε < 0, then nobody pays taxes and the public good is not being
produced, as a result of a prisoners’ dilemma. Note that, for this outcome to arise as the only
Nash equilibrium, each player has to be deeply disgusted by the tax evasion on the part of
the other player, so much so that both of them end up preferring not to have the public good
at all rather than offering a free lunch to others. Alternatively, if ε is small enough to yield
100 + y − t − ε > y, Matrix 4.9 is a chicken game with two Nash equilibria in pure strate-
gies along the secondary diagonal, and of course in this case the Nash equilibrium in mixed
strategies also becomes relevant.

The above game offers a simple explanation of why people may be keen on evading taxes.
The next step consists in looking at whether inspecting evasion turns out to be convenient
or not.

4.2.2 Fiscal inspection

Given that people evade taxes with some positive probability, a government may introduce a
fiscal inspection service whose explicit purpose is to establish how precise is the achievement
of fiscal liabilities by each contributor. The effectiveness of inspection relies on some specific
knowledge and the good professional qualification of the fiscal inspectors. The game illus-
trated in Matrix 4.10 involves an inspector, I and a taxpayer, T . The inspector may choose
to inspect (i) or not (ni), the taxpayer may either pay (p) or evade taxes (e).

Matrix 4.10 The fiscal inspec-
tion game

T
p e

I i −5;0 5;−60
ni 0;0 0;50
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Payoffs are set to tell the following story. Inspecting activities are costly, the cost of
inspecting any single taxpayer being equal to 5. The amount of taxes to be paid is 100,
and if the inspector detects evasion, the taxpayer has to pay the amount due plus a fine equal
to 10. For simplicity, I am assuming that evasion is detected for sure. It is easily checked that
this game has no Nash equilibrium in pure strategies: this, in a nutshell, explains why fiscal
inspection is usually carried out on randomly drawn samples of taxpayers. Having reviewed
the basics of individual behaviour, we may now turn to some macroeconomic policy games.

4.2.3 Rules versus discretion

By a continuing process of inflation,
government can confiscate, secretly
and unobserved, an important part
of the wealth of their citizens.

John Maynard Keynes

Whether a policy-maker should adopt an active – and possibly highly discretionary –
behaviour or stick to well-defined and rigid rules has always been a hot issue in the debate
on the optimal design of macroeconomic policies. Keynesians versus monetarists, neo-
Keynesians versus neo-classicals, irrespective of the exact labels they have adopted over
the decades, opposite schools have patronized one view or the other, alternatively. In gen-
eral, a number of seemingly good reasons have been put forward to defend both rules and
discretion. According to Milton Friedman (Nobel Prize in 1976) and the monetarist school,
rules are preferable to activism, because a steady policy agenda reassures the economy and
contributes to stabilize prices and the private sector’s expectations, while Keynesians are
more keen on fine-tuning practices. Two simple games, loosely based on Canzoneri (1985),
help to illustrate the matter.

The game relies on the idea that an active macroeconomic policy may boost gross national
product (GNP) but, in doing so, also creates inflation.14 The government (G) may opt for
either discretionary behaviour (d) or rules (r ); the private sector may either gather informa-
tion on the current inflation rate (i) or not (ni). In Matrix 4.11, information is costless. As a
result, i is a dominant strategy for the private sector. In view of this, the government will find
it convenient to go for rules rather than discretion, and (r, i) obtains as the unique Nash equi-
librium, attainable by iterated deletion of dominated strategies. What if, more realistically,
gathering information is a costly activity? The game becomes that depicted in Matrix 4.12.

The striking consequence is that the private sector no longer has a dominant strategy,
and, as a result, the game yields no Nash equilibrium in pure strategies. Relatedly, there is
no natural prescription for the government to choose either way. The foregoing discussion
establishes the following remark.

Matrix 4.11 Rules versus discretion with
costless information

P
i ni

G d −5;5 10;−5
r 5;0 5;0
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Matrix 4.12 Rules versus discretion with
costly information

P
i ni

G d −5;4 10;−5
r 5;−1 5;0

REMARK 4.6 If the private sector is fully aware of the features of the economic environ-
ment and the consequences of economic policy, then rules looks preferable to discretion.
If it is costly for the private sector to get the relevant information, then the adoption of
discretionary behaviour by policy-makers cannot be ruled out a priori.

4.2.4 Monetary and fiscal policy coordination

Before abandoning the field of macroeconomic policy, I would like to show you a game
illustrating in elementary but intuitive terms why central bankers (CB) and finance ministers
(FM) should coordinate the menu of their respective policy agendas.

Each policy-maker may choose between restrictive (r ) and expansionary (e) stances. From
Matrix 4.13, we learn that r is dominant for the central bank, which controls inflation by
lowering the money supply, while e is dominant for the government, which may boost
employment and national income by increasing aggregate demand (via an increase in public
expenditure or a decrease in fiscal pressure, or both). As a result, the game yields a unique
Nash equilibrium, (r, e), at the intersection of dominant strategies. However, the game is a
prisoners’ dilemma as the other outcome along the secondary diagonal Pareto-dominates the
Nash equilibrium. That is, policy-makers should indeed coordinate their respective strategies
in order to achieve socially efficient outcomes.

4.3 Natural resources and the environment
To conclude this chapter, I will briefly discuss two related issues that would easily require
a book of their own: the exploitation of natural resources; and the environmental effects
of human production and consumption activities. Both have much to do with externalities
and the undesirable tendency for firms not to internalize them at all. A further problem is
that exhaustible natural resources are usually exploited to produce the energy required by
polluting activities.

The exploitation of natural resources by a large number of agents (firms or individuals)
gives rise to a gigantic prisoners’ dilemma game that is traditionally known as the tragedy of
commons, after the pioneering paper by Hardin (1968). The resource in question may either
be renewable (e.g., fish) or non-renewable (e.g., fossil fuels). In the first case, an environ-
mentally friendly approach would suggest the adoption of an exploitation rate strictly lower
than the natural rate of reproduction of the resource itself. In the second case, any positive

Matrix 4.13 Macroeconomic policy coor-
dination

FM
r e

CB r 10;2 5;5
e 8;8 2;10
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Matrix 4.14 Tragedy of
commons

2
l h

1 l 10;10 4;20
h 20;4 12;12

exploitation rate will cause the resource to exhaust in a finite time, and therefore finding or
inventing suitable alternatives not characterized by the same problem is or should be at the
top of our agenda.

Let’s see how a typical game of this sort works. Suppose it is a fishery game. Players are
two firms, 1 and 2, whose respective harvest rates can be either high (h) or low (l), while the
natural reproduction rate of fish is n, with h > n > l. Hence, harvesting at a low rate would
be a wise strategy, but selfish strategic interaction unfortunately prevents the two firms from
taking into account the depletion of the population of fish (whales could tell us a good deal
about this). The resulting 2 × 2 game is shown in Matrix 4.14.

Each firm’s payoff increases in its own harvest rate, given the rival’s strategy. As a result,
(h,h) is the unique Nash equilibrium, at the intersection of dominant strategies. This is the
outcome players are bound to play, although they have a sense that preserving the natural
resource for future exploitation would definitely be preferable.

An analogous situation arises if the use of the natural resource for production and/or
consumption involves polluting the environment. Firms do not internalize externalities as,
commonly, they only care about profits. And, in general, neither do single individuals: we
all could easily switch off air conditioning or take buses or trains powered by electricity
instead of driving our cars, but more often than not we don’t, and we stick instead to our bad
habits. Why? Because of a cheap excuse whereby we are ‘atomistic’ agents whose individual
choices are, on aggregate, just irrelevant. Taken at face value, this view sounds very much
like an intuitive and solid justification underlying the tragedy of commons, but of course its
weakness can be quickly unveiled by trying to figure out what would be the effect of a major
change in the attitude of a majority of people around the world.

Of course, a properly designed menu of policy measures may help, in this respect. For
instance, taxes and subsidies can be used to induce firms to clean up their technologies or
invest in R&D projects for new ‘green’ ones based on renewable energy sources. Two simple
games illustrate this point. Matrix 4.15 describes an industry where two firms decide whether
to invest in green technologies or not, in the absence of any regulation or policy measures.15

Strategies c and d stand, respectively, for clean technology and dirty technology. Inventing
a green technology and making it a feasible one for large-scale production entails an R&D
cost equal to k. The gross profits that each firm extracts from this market is π irrespective of
the technology in use (say, because market shares and the equilibrium price are the same).

Matrix 4.15 Investing in green tech-
nologies, version 1

2
c d

1 c π − k;π − k π − k;π
d π;π − k π;π
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Matrix 4.16 Investing in green technolo-
gies, version 2

2
c d

1 c π − k + σ ;π − k + σ π − k + σ ;π − τ
d π − τ ;π − k + σ π − τ ;π − τ

Clearly, the game is a prisoners’ dilemma whose only equilibrium (in dominant strategies)
is (d,d).

Now suppose the government introduces an environmental policy whereby firms investing
in green technologies are subsidized through public money by the amount σ ∈ (0, k), while
firms sticking to old and dirty technologies are taxed (or fined) by an amount τ ∈ (0,π). This
regulated game looks as in Matrix 4.16.

If τ > k − σ, strategy c is now the dominant one for both firms. Hence, if the subsidy
is large enough, the unique equilibrium is (c, c). This outcome is also, by the way, Pareto-
efficient.16 Note that a similar outcome could be generated by a stimulus transmitted from
environmentally concerned consumers telling firms that they would like to buy goods whose
environmental impact is low or ideally nil, with no need to use public money for the same
purpose. Summing up, we can express this in the following remark.

REMARK 4.7 In general, unregulated firms disregard the environmental implications of
their strategies. The adoption of an appropriate tax/subsidy policy by the government, or
the development of environmental awareness by consumers, can induce firms to internalize
externalities and solve the tragedy of commons.

Further reading

For an exhaustive overview of the themes dealt with in this chapter, as well as many others
belonging to industrial economics, see, at an increasing level of complexity, the textbooks by
Cabral (2000), Shy (1995), Belleflamme and Peitz (2010), Tirole (1988) and Martin (2002).
For specific topics, see: (i) Scotchmer (2004) on innovation; (ii) Beath and Katsoulacos
(1991) and Anderson et al. (1992) for product differentiation; (iii) Shy (2001) on the eco-
nomics of networks, compatibility and standardization; (iv) Blanchard (1997) and – at an
advanced level – Blanchard and Fischer (1989), Persson and Tabellini (1990) and Barro and
Sala-i-Martin (1995) on macroeconomic policy; and (v) Pearce and Turner (1989), Stern
(2007, 2009), Tisdell (2009) and Anderson (2010) on environmental externalities and the
exploitation of natural resources. The literature on auctions and mechanism design deserves
special attention: see Vickrey (1962), Krishna (2002) and Klemperer (2003, 2004).
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5 Repeated games and collusive
behaviour

Time will say nothing but I told you so,
time only knows the price we have to pay;
if I could tell you I would let you know

W. H. Auden,
If I could tell you

So far, we have gone through a survey of one-shot games, where players meet just once and
pursue the non-cooperative maximization of their respective objectives. In such games, cal-
endar time (either past or future) has no bearing at all on agents’ choices. Moreover, a striking
feature of many games is that the resulting Nash equilibria may indeed be Pareto-inefficient
(as typically happens in the prisoners’ dilemma). However, casual observation suggests that
players – firms, institutions, nations – often do interact repeatedly over long time spans.
This prompts the construction of repeated game frameworks in which agents may collude to
maximize common objectives, perhaps the sum of their individual ones, though keeping an
intrinsically non-cooperative attitude. It is important to stress this latter aspect to distinguish
the issue treated in this chapter from what belongs to the theory of cooperative games, which
we shall deal with in Chapter 10. Essentially, the difference between repeated games and
cooperative games can be grasped in the following terms. While players involved in a coop-
erative game are assumed to cooperate explicitly towards the maximization of a common
objective irrespective of the time horizon (that is, even if the game is a one-shot event), a
repeated game relies on the possibility that repeating over time the same constituent game
gives rise to a form of implicit collusion based upon non-cooperative rules but nonetheless
capable of replicating the outcome of an explicitly cooperative behaviour.

5.1 The prisoners’ dilemma revisited
To fix ideas, let’s recall the basic features of a prisoners’ dilemma, by imposing the
appropriate conditions on the payoff sequence characterizing a generic 2 × 2 game, as in
Matrix 5.1.

Matrix 5.1 A generic prisoners’ dilemma

2
s s̃

1 s π(s, s);π(s, s) π(s, s̃);π(s̃, s)
s̃ π(s̃, s);π(s, s̃) π(s̃, s̃);π(s̃ yy, s̃)
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Strategy s̃ is strictly dominant for both players if and only if the following inequalities are
simultaneously satisfied:

π(s̃, s)>π(s, s), π(s̃, s̃)>π(s, s̃) (5.1)

In such a case, (s̃, s̃) is the unique Nash equilibrium of this game, at the intersection of
dominant strategies. Additionally, the game will be a prisoners’ dilemma if

π(s̃, s̃)<π(s, s) (5.2)

That is, players prefer the outcome (s, s), but they cannot reach it due to the presence of
dominant strategies. Now we can ask ourselves whether there exists a mechanism whereby
a prisoners’ dilemma game may generate the Pareto-optimal outcome as an equilibrium via
the repetition of the constituent game appearing in Matrix 5.1. The one-shot game, which
may be labelled as G(1), becomes the constituent game of the repeated game, or supergame,
defined as G(T ) if the game is repeated over t = 0,1,2,3, . . . , T, or G(∞) if it is repeated
infinitely many times, over t = 0,1,2,3, . . . ,∞. In either case, time is discrete.1

The concept underlying the results I am about to illustrate is that the perspective of
receiving a long (possibly infinitely long) flow of future profits might change the players’
perception of the game and the way they solve it, as compared to its one-shot version. As
a preliminary step, I will briefly examine the role of the time horizon and time preferences
through a simple example concerning something that all of you may have experienced in
your everyday life.

5.2 Time and time discounting
I never think of the future –
it comes soon enough.

Albert Einstein

In the remainder, I will assume that players share the same time preferences, summarized by
a common discount factor δ ∈ [0,1]. This is defined as δ ≡ 1/(1 + ρ), ρ ≥ 0 being the (non-
negative) discount rate applied to future payoffs. To fully appreciate the key role of time
discounting, a little detour will be useful. The parameter ρ is, in fact, an interest rate used by
agents in the repeated game so as to compare payoffs accruing to them in different periods
of the supergame itself, in much the same way as one does (or should do) when evaluating
investments in real or financial assets. To understand how this mechanism operates, consider
the possibility of investing today a certain amount of money equal to M in government bonds
(public debt) whose duration is a year. The bond yields an annual return rate equal to ρ, to be
paid one year from now together with the full reimbursement of the initial sum. Therefore,
after 12 months, you will get M(1 + ρ), your net return being ρM. Now suppose you are
fully satisfied with your investment and decide to reinvest the entire sum M(1 + ρ) for yet
another year in the same bond. At the end of the second year you’ll get M(1 + ρ)(1 + ρ) =
M(1 + ρ)2. If you reinvest the initial sum plus the cumulated returns for t years, in the end
you’ll receive a sum equal to M(1 + ρ)t .

Then imagine you run across a broker who proposes that you invest now the same
amount M in some financial asset, and receive a sum S > M after t years. Before sign-
ing the contract and buying that asset, you have to evaluate whether the (implicit) return rate
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is appealing or not. To do so, one thing you can do is to discount S at the rate being paid on
government bonds of the same duration, t years. Hence, you compute the present value

PV = S

(1 + ρ)t
= S

δt
(5.3)

of the final payment, and compare it to the initial investment M . If PV = M, then the invest-
ment can be considered as fair, as it is equivalent to buying the same amount of public debt
for the same number of years. Otherwise, if PV > M, it means that

S > M(1 + ρ)t = Mδt (5.4)

i.e., this asset is more convenient than public debt,2 and conversely if

PV < M ⇔ S < M(1 + ρ)t = Mδt (5.5)

Finally, observe that PV becomes progressively smaller as the discount rate ρ increases
(or equivalently, as the discount factor δ decreases): this fact will play a key role in what
follows.

In order to have a preliminary appraisal of this mechanism and its implications, consider
another perspective where you invest the sum M in a bond expiring after t years, and yielding
a fixed coupon γ per year. At the end of the bond’s life, the overall value of your investment,
measured in present value, is equal to the discounted flow

M + γ + γ

1 + ρ
+ γ

(1 + ρ)2
+ γ

(1 + ρ)3
+ · · · (5.6)

so that your net gain is the discounted flow of coupons, as the initial sum M is fully
refunded.3 Discounting takes place at the same rate ρ as above. If the bond is everlasting, it
can be shown that4

γ + γ

1 + ρ
+ γ

(1 + ρ)2
+ γ

(1 + ρ)3
+ · · ·= γ

∞∑
t=0

1

(1 + ρ)t
= γ

∞∑
t=0

δt (5.7)

corresponds to

γ × 1

1 − δ
(5.8)

which is increasing with δ (or, equivalently, decreasing with ρ). Any increase in δ makes the
value of future gains loom larger from the investor’s standpoint.

Having settled these basic accounting issues, we may now turn our attention back to
supergames.
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5.3 Finite or infinite horizon?
Time has been transformed, and we have changed;
it has advanced and set us in motion;
it has unveiled its face,
inspiring us with bewilderment and exhilaration.

Kahlil Gibran

Consider a repeated game whose constituent game is a two-player prisoners’ dilemma, as
in Matrix 5.1. The supergame is characterized by imperfect, complete and symmetric infor-
mation in each stage (that is, at any time t), while information is perfect across any pair of
contiguous stages, (t − 1, t) or (t, t + 1): this means that in each period both players are able
to reconstruct the entire sequence of moves up to that period.

As to the length of the time horizon (i.e., the duration of the supergame), there are three
different possibilities:

• the terminal date is finite, say, T , and both players are aware of this;
• the supergame lasts forever, the terminal date being ∞, or doomsday, and both players

are aware of this; and
• the supergame ends at some finite date T , and both players know that it is finite but they

have no precise idea about when the supergame will in fact end – in view of this, every
day both players attach a positive probability p∈ (0,1) to the fact that the supergame will
indeed continue.

The third case seems a mix of the first two, while in fact it can be shown that it yields
the same results as the second, except that the mathematics involved is more cumbersome.
Therefore, in order to keep the analysis as easy as possible, I will confine myself to an
intuitive comparative appraisal of the first two perspectives.

The fundamental question is this: Will a supergame with finite terminal date (a priori
known to players) work? That is, will it allow players to generate a Pareto-efficient solution
to the prisoners’ dilemma, or not?

It can be quickly shown that the answer is negative. To see this, consider the finite
supergame G(T ), with the stage game being a prisoners’ dilemma at each t = 0,2,3, . . . , T ,
and solve it by backward induction from T . Corresponding to the last stage taking place at
the terminal time, there is no future by definition. Accordingly, players will solve the pris-
oners’ dilemma by choosing their respective dominant strategies, as if they were interacting
just once. This generates the Pareto-inefficient Nash equilibrium of the one-shot game we
already know all too well. Now you may step back one period, to see what happens at T − 1.

At this date, the fact that there exists a (short) future is clearly immaterial, as players know
that the one-shot inefficient equilibrium will pop up at T . Hence, at T − 1 they will behave
as if it were the terminal time, reproducing the one-shot prisoners’ dilemma – as if the future
did not exist. This mechanism reproduces itself time and again as players step back towards
the initial date, at which any future has become immaterial. Therefore, they play the Nash
equilibrium in dominant strategies of the constituent game T + 1 times, being altogether
unable to construct a remedy to the prisoners’ dilemma. This result can be summarized in
the following remark.
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REMARK 5.1 The only subgame perfect equilibrium of a prisoners’ dilemma repeated over
a finite horizon consists in repeating the Nash equilibrium in dominant strategies of the
constituent game at every stage.

It is worth noting the quite strong analogy between this set-up and Rosenthal’s centipede
game: in both cases, backward induction, together with the presence of dominant strate-
gies at each stage, generates a complete disaster that prevents players from achieving Pareto
efficiency.5 Consequently, we’ll necessarily have to cope with supergames of infinite dura-
tion, which can be viewed as a simplified approach to more realistic problems where agents
interact a finite number of times but the terminal date is, so to speak, ‘foggy’.

5.4 The folk theorems
Time present and time past
are both perhaps present in time future,
and time future contained in time past.
If all time is eternally present,
all time is unredeemable.

T. S. Eliot,
Burnt Norton (Four Quartets)

The theory of repeated games is essentially based on a genealogy of theorems whose origins
have to be sought in the corridors of mathematics and economics department in the 1960s.
Since the father is unknown – or, at least, there is no unanimous agreement on paternity6 –
these results fall under the commonly accepted label of folk theorems.

A seemingly obvious benchmark for understanding repeated games and the emergence
of collusion consists in taking a look at cartels. Firms collude in prices or market shares
(or both) to increase their profits as compared to fully non-cooperative equilibria. In this
regard, one may think of OPEC (Organization of Petroleum Exporting Countries) as a well-
known example, while actually it is not an appropriate one, at least in terms of what we are
about to learn concerning supergames. Why? Because OPEC is an explicit cartel agreement
among sovereign countries, instead of firms: as such, OPEC members cannot be prosecuted,
while firms are subject to antitrust laws worldwide. This fundamental difference is the reason
why OPEC members usually declare in public what they are about to do with the oil price
almost on a daily basis, while colluding firms prefer to keep the lowest possible profile.

Cartel behaviour is of course harmful, as it decreases consumer surplus and social welfare.
To understand how this happens, look at Figure 5.1, offering a graphical sketch of a market
with a linear demand p = a − Q, where p is the unit price of the good being traded, Q is
the overall quantity being traded, and a ≥ p is the so-called reservation price (the maximum
price that any consumer in this market would be willing to pay for the first unit). Production
takes place at a constant unit cost c, positive and lower than a.

This market is being served by a given number of firms (at least one), with a resulting
quantity–price equilibrium pair identified by the point (Q∗, p∗) along the demand function.
The area of the rectangle � measures industry profits (or producer surplus), while the areas
of the two triangles CS and DL measure consumer surplus and the deadweight loss, respec-
tively. Consumer surplus is the amount of surplus that consumers would be willing to spend
to purchase each and every unit of Q∗, but are not obliged to pay because every unit is sold at
price p∗. The deadweight loss is the portion of surplus that vanishes because of firms’ mar-
ket power, every time that a market is not working under perfectly competitive conditions
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QQ∗
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c

C S

DL�

Figure 5.1 Profits, consumer surplus and welfare

(whereby firms should price at marginal cost). The sum of industry profits and consumer sur-
plus, SW =�+ CS, is a commonly accepted measure of social welfare.7 Any price increase,
accompanied by an output reduction, enlarges the deadweight loss and ultimately decreases
welfare.

Now recall that an outcome equivalent to perfect competition also arises under the (admit-
tedly quite unrealistic) Bertrand paradox that we met in Chapter 4. Shall we think that,
whenever price-setting firms selling a homogeneous good succeed in keeping the price
above c, they are colluding? Not necessarily. A stylized version of the Cournot (1838) model
suffices to make the point. To begin with, the Bertrand game replicates perfect competition
provided that firms are not capacity-constrained, i.e., each of them has to be endowed with
a plant whose capacity k is sufficiently large to serve the entire market at pBN = c. As we
already know, this is a rather strong assumption. What if, more reasonably, both firms choose
their respective capacity before engaging in price competition – with the rational expecta-
tion to operate at full capacity corresponding to the resulting equilibrium? This is a brilliant
intuition by which Kreps and Scheinkman (1983) have shown that price and quantity compe-
tition are the same under capacity constraint. Without delving into the mathematical details
of their proof, I will give just an intuitive explanation of the basic result. Since building up
capacity is costly – say, rk if the unit price of capital goods is r – one should not expect firms
to acquire the amount of capital needed to drive the market price down to c, the reason being
that this would entail negative profits, with firms being unable to cover the cost of capacity
because gross profits would be nil due to the standard Bertrand argument. Therefore, firms
will install plants whose overall size falls short of the perfectly competitive output of the
industry, i.e., they will practice a form of demand rationing enabling them to keep the price
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above unit cost c. In practice, this approach is equivalent to saying that firms choose their
respective output levels and then let the market clear through the price mechanism. The result
is that they solve the Bertrand paradox. This observationally coincides with (and replicates
the spirit of) the original quantity-setting game examined by Cournot (1838). Thus, any pre-
commitment on output or capacity levels has an intrinsically anticompetitive flavour, but can
well be the outcome of a fully non-cooperative behaviour and, as such, it may be prosecuted
per se, unless one can show that some agreement intentionally aimed at raising prices is
hidden behind the curtains.

Explicit agreements, however, are likely to be detectable. The purpose of this chapter is
to illustrate other – implicit – mechanisms that can be used to generate and stabilize cartels
over time, without yielding any hard evidence that could be used against cartel members in
court. This is the specific aspect of firms’ activities that has operated as an engine of the
literature on repeated games and generated its folk theorems.

The most commonly used version – and the first to be published in an academic journal –
is due to Friedman (1971), and I will stick to it throughout this chapter as well as in further
applications in the remainder of the book.

To illustrate the theorem, I will use the Bertrand duopoly game as a benchmark case. As
usual, firms 1 and 2 are fully symmetric and sell the same good. The unit production cost is c
and any fixed costs are assumed away. As a consequence, the resulting Bertrand–Nash equi-
librium profits are nil. By contrast, suppose firms build up a cartel to maximize joint profits,
by setting the price at its monopoly level, and then split the resulting monopoly profits evenly.
If so, individual cartel profits are πC = πM/2. Yet, the temptation to deviate from monopoly
pricing is there: setting pD = pM − ε, with ε positive and arbitrarily small, the cheating firm
throws the ‘loyal’ cartel mate out of the market and (disregarding the discount ε) gains full
monopoly profits πD =πM. The resulting 2 × 2 game is represented in Matrix 5.2.

Since strategy pD weakly dominates strategy pM, and the resulting unique Nash equilib-
rium (pD, pD) is Pareto-inefficient (for firms, of course), the Bertrand game is a prisoners’
dilemma.

The situation faced by firms is illustrated in Figure 5.2, which is drawn in the profits space.
The origin of the axes denotes the Bertrand paradox, with profits equal to zero for both firms,
while the line at −45◦ is the frontier of industry profits, along which π1 +π2 =πM.

With the exclusion of the origin, the triangular region identified by the intersections
between the negatively sloped frontier and the axes defines the ‘cone’ containing all the
outcomes that (at least weakly) Pareto-dominate the Bertrand paradox itself. If there were
capacity constraints or some degree of product differentiation, the non-cooperative outcome
would put firms at point N , and the region of Pareto-superior outcomes would be the triangle
NBB′.

Any cartel sustaining prices above their fully non-cooperative level would drive the indus-
try to some point in the relevant cone, which one may label as the admissible region for
collusion. Full collusion at the monopoly price, as in Matrix 5.2, allows firms to reach the

Matrix 5.2 Monopoly versus Nash pricing in
the Bertrand model

2
pM pD

1 pM πM/2;πM/2 0;πM

pD πM;0 0;0
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π1 + π2 = πM
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B

Figure 5.2 The frontier of industry profits and the cone of Pareto-superior
allocations

frontier. Incidentally, this graphical representation of the cartel problem clearly shows that
there exist infinitely many degrees of collusion, monopoly pricing being only one out of
many. In particular, should firms be unable to stabilize full collusion, there remains other
less attractive – but also less demanding – alternatives, something that clearly makes the
antitrust officers’ life a dismal one.

We are now in a position to ask ourselves how the equilibrium outcome of an infinitely
repeated game whose constituent stage game is a prisoners’ dilemma may be modified
because of repetition.

The most general formulation of the folk theorem for an infinite supergame G(∞) is the
following.

THEOREM 5.1 (FOLK THEOREM) The supergame G(∞), during which players share the
same constant intertemporal discount factor δ ∈ [0,1], may yield as an equilibrium any
outcome such that the resulting payoff vector belongs to the admissible region, provided that
the discount factor δ is sufficiently high.

Theorem 5.1 may appear, at first sight, a little bit cryptic. In fact, it simply says that
a Pareto improvement over the Nash equilibrium of the constituent game G(1) can be
generated through an infinite repetition of the latter. How big this Pareto improvement will
be, well, that depends on how patient (or forward-looking) the players are. That is, play-
ers can attain any payoff vector in the region NBB′, provided they attach a sufficiently high
weight to future periods. The only case where this achievement is ruled out altogether is
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that where agents are totally short-sighted, i.e., δ = 0. If so, they perceive each stage of
the supergame as if it were the only stage, and consequently are forced to play the Nash
equilibrium of the one-shot game forever.

To give you the flavour of how a supergame operates, I will illustrate the infinite repetition
of Matrices 5.1 and 5.2 (i.e., a generic prisoners’ dilemma and the Bertrand duopoly game)
using the so-called perfect folk theorem due to James Friedman (1971). Then, I will outline
an alternative view on repeated games using Axelrod’s (1981) tit-for-tat strategies, widely
used in political science.

5.4.1 The perfect folk theorem

If people are good only because they fear punishment,
and hope for reward, then we are a sorry lot indeed.

Albert Einstein

Friedman’s version of the folk theorem is called perfect because it produces a subgame
perfect equilibrium. To begin with, one has to spell out the rules governing the behaviour of
players during the supergame. Players receive the following instructions, which they have to
abide by throughout the repeated game:

1 In period 0, play the collusive strategy (for instance, monopoly price pM ).
2 In any period t ≥ 1, play the collusive strategy, provided everybody has adopted it at

time t − 1. Otherwise, play the one-shot Nash equilibrium strategy (for instance, the
Bertrand–Nash price).

These strategies are known as grim trigger strategies or just trigger strategies, as any
deviation from the collusive path triggers a Nash punishment that will last forever – with no
chance of getting back to collusion ever again – due to the recursive nature of the second
rule. This Nash reversion, or Nash punishment, is meant to exert a deterrence effect against
unilateral deviations from the cartel path.

To see how these rules may succeed in stabilizing collusion forever, let’s focus first on the
repetition of the game described in Matrix 5.1 under the conditions spelled out in conditions
(5.1) and (5.2). The collusive outcome is (s, s). If both players stick to it forever, each of
them receives the following flow of discounted payoffs:

�C =π(s, s)+ δπ(s, s)+ δ2π(s, s)+ δ3π(s, s)+ · · ·
=π(s, s)(1 + δ + δ2 + δ3 + · · · ) (5.9)

which, using the techniques illustrated above, simplifies to

�C = 1

1 − δ
×π(s, s) (5.10)

This payoff stream measures the individual firm’s incentive to remain on the collusive path
forever. Yet, given that the stage game is a prisoners’ dilemma, the temptation to defect
is always there, at any time t during the supergame. Moreover, if deviation is attractive,
a cheating player will indeed find it most attractive at time zero, as this means that the
resulting payoff is not diminished by time discounting.8 However, defection is punished à la
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Nash forever. Hence, the flow of payoffs associated to the alternative path starting with a
unilateral deviation is

�D =π(s̃, s)+ δπ(s̃, s̃)+ δ2π(s̃, s̃)+ δ3π(s̃, s̃)+ · · · (5.11)

Now observe that

δπ(s̃, s̃)+ δ2π(s̃, s̃)+ δ3π(s̃, s̃)+ · · ·= 1

1 − δ
×π(s̃, s̃)−π(s̃, s̃)

=
(

1

1 − δ
− 1

)
π(s̃, s̃) (5.12)

and therefore

�D =π(s̃, s)+ δ

1 − δ
×π(s̃, s̃) (5.13)

Players will find it convenient to collude forever if and only if the following inequality
holds:

�C ≥ �D ⇔ π(s, s)

1 − δ
≥π(s̃, s)+ δπ(s̃, s̃)

1 − δ
(5.14)

which can be rearranged to yield Friedman’s stability condition:

δ ≥ π(s̃, s)−π(s, s)

π(s̃, s)−π(s̃, s̃)
= δ∗ (5.15)

The fundamental result summarized in (5.15) deserves a closer look. The fraction on the
right-hand side is always less than one because π(s, s) > π(s̃, s̃), as the underlying stage
game is a prisoners’ dilemma. Hence, (5.15) identifies a threshold of the discount factor, δ∗,
above which collusion is stable forever. This indeed captures the idea that, in order to solve a
prisoners’ dilemma once and for all, players have to be far-sighted enough. This is a general
property of folk theorems, differing in a number of details, but consistently generating the
same essential message: if future payoffs loom large enough from the players’ standpoint,
then an infinitely repeated game yields a way out of the inefficiency affecting the one-shot
version of the same game.

Additionally, observe that the threat of reverting to the infinite punishment after any devi-
ation is indeed a credible one, as the punishment itself is an infinite chain of Nash equilibria.
Therefore, Friedman’s rules produce a subgame perfect equilibrium.

Let’s now turn to the Bertrand duopoly game with fully symmetric firms. For simplicity,
we can examine the case of full collusion, with firms examining the possibility of setting the
monopoly price over t = 0,1,2,3, . . . ,∞.

The relevant payoffs appear in Matrix 5.2. An everlasting cartel yields to each member
the following discounted profit flow:

�C = 1

1 − δ
× πM

2
(5.16)
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According to rule 2 above, a unilateral deviation gives the cheating firm full monopoly
profits for a single period only, as firms shall subsequently revert to the Nash punishment
forever – which corresponds to an infinite replication of the Bertrand paradox annihilating
profits. Accordingly, we have that

�D =πM + 0 (5.17)

The stability condition requires

πM

2(1 − δ)
≥πM ⇔ δ ≥ 1

2
= δ∗

B (5.18)

This result is an alarm bell ringing loud on the desks of any antitrust agency. Basically, it
says that these two firms are very likely to collude, since

δ∗
B = 1

1 + ρ∗
B

= 1

2
(5.19)

and thus (5.18) can be rewritten in a more explicit way as ρ ≤ ρ∗
B, with ρ∗

B = 1 and there-
fore ρ ≤ 1. This latter inequality says that using any interest rate lower than 100 per cent
to discount future profits will indeed allow firms to stabilize the price cartel forever. If
entrepreneurs evaluate the cartel in the same way as a long-term investment project, and use
long-term interest rates to discount profits in the repeated game, then obviously this cartel
should be stable, as interest rates on long-run investments are much lower than 100 per cent.

Admittedly, this is a rather extreme case, as product differentiation, cost asymmetries,
etc., are assumed away. Moreover, cartels may involve more than two firms, and it can be
easily shown that cartel size negatively affects the stability of collusion. To appreciate this
scale effect, we may stick to the initial assumption of price-setting behaviour with fully
symmetric firms and a homogeneous good, except that we consider a population of n cartel
members.9

The firms aim at stabilizing full collusion on the frontier of monopoly profits over an
infinite horizon. Hence, along the collusive path, each of them gets a symmetric share
of monopoly profits πM/n per period. As in the duopoly case, a unilateral deviation yields
full monopoly profits to the deviator and triggers an infinite punishment via the repetition
of the Bertrand–Nash equilibrium forever. Therefore, increasing the size of the cartel rescales
the profitability of collusion downwards, while the appeal of a deviation and the harshness
of the punishment remain exactly the same as in the duopoly case. Condition (5.18) becomes

πM

n(1 − δ)
≥πM ⇔ δ ≥ πM −πM/n

πM
= n − 1

n
(5.20)

where the critical threshold of the discount factor is monotonically increasing with the num-
ber of firms participating in the cartel. In the limit, with n infinitely large, the fraction
(n − 1)/n tends to one, showing that an infinitely large cartel is unsustainable. The intu-
itive reason for this result is that, the bigger the cartel, the smaller the slice of monopoly
profits accruing to any cartel member. In the limit, the size of the slice tends to zero and
therefore the difference between the performance of a cartel and that of a perfectly competi-
tive market tends to vanish. This result is a robust one (that is, it is confirmed by fully fledged
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models admitting the presence of some degree of product differentiation and other realistic
features) and conveys the basic message that small cartels are much more likely to arise and
persist than large ones.

As I have already said, the folk theorem has evolved over time (and keeps doing so) to deal
with several important aspects of repeated games. A very relevant issue is the efficiency of
punishment. In this regard, optimal (or, most efficient) punishments have been designed by
Abreu (1986, 1988) and Fudenberg and Maskin (1986). Other issues are imperfect monitor-
ing of deviations (see Green and Porter, 1984), the possibility of observing countercyclical
collusion, with firms turning to non-cooperative behaviour during economic booms (see
Rotemberg and Saloner, 1986), the influence of product differentiation on cartel stability (see
Deneckere, 1983; Chang, 1991, 1992; Ross, 1992, inter alia) and the choice of productive
capacity in oligopoly supergames (see, e.g., Brock and Scheinkman, 1985).

5.4.2 Tit-for-tat

The structure of the supergame appearing in Axelrod (1981) has much in common with
Friedman’s perfect folk theorem, while some of the features are specific to the tit-for-tat
logic and do not appear anywhere else in the literature on implicit collusion in repeated
games.

Also in Axelrod’s model, the supergame takes place over an infinite horizon, the con-
stituent game being a prisoners’ dilemma (i.e., conditions (5.1) and (5.2) are assumed to
hold). What changes is the set of rules regulating the behaviour of agents throughout the
supergame:

1 In period 0, play the collusive strategy.
2 In any period t ≥ 1, play the collusive strategy, provided everybody has adopted it at time

t − 1. Otherwise, play the strategy chosen by your rival(s) in period t − 1.

Hence, the second rule does not correspond to rule 2 in Friedman (1971). The label tit-
for-tat expresses this idea of reciprocating the rival’s behaviour. To illustrate how Axelrod’s
rules operate, I will refer to Matrix 5.1. In a nutshell, the tit-for-tat rule establishes that a
player that never colludes will receive πi (s̃, s) at t = 0 and πi (s̃, s̃) at any t ≥ 1. Applying
Axelrod’s rules, one replicates condition (5.14), which obviously implies that collusion is
stable provided (5.15) is met. As in Friedman (1971), also here stability is a matter of time
discounting. However, in the tit-for-tat framework this is not the only possibility. Following
Axelrod (1981, p. 311, Theorem 2), one can verify that adopting the tit-for-tat strategy is
more convenient than alternating strategies s and s̃ if

πi (s̃, s)+ δπi (s, s̃)

1 − δ2
≤ πi (s, s)

1 − δ
(5.21)

that is, if

δ ≥ πi (s̃, s)−πi (s, s)

πi (s, s)−πi (s, s̃)
= δ̂ (5.22)
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Accordingly, a player will indeed adopt tit-for-tat strategies in equilibrium provided that

δ ≥ max

(
πi (s̃, s)−πi (s, s)

πi (s̃, s)−πi (s̃, s̃)
,

πi (s̃, s)−πi (s, s)

πi (s, s)−πi (s, s̃)

)
(5.23)

Observe that the two expressions appearing in the parentheses on the right-hand side of
inequality (5.23) share the same numerator, so that the difference between the two critical
thresholds of the discount factor depends entirely on their respective denominators. Provided
conditions (5.1) and (5.2) apply – so as to make the constituent game a prisoners’ dilemma –
the ranking of δ∗ and δ̂ will be sensitive to the relative size of payoffs.

5.4.3 Examples

The present chapter is probably the most demanding of the entire book. For illustrative
purposes, I will dwell upon two simple games where payoffs take numerical values.

Consider the following 2 × 2 games (see Matrices 5.3 and 5.4), both sharing the structure
of the prisoners’ dilemma.

Suppose the players interact over an infinite horizon, sharing the same discount structure
represented by a common discount factor δ. You may compute the threshold values δ∗ and δ̂

for both supergames, and easily rank them.
What you get on the basis of Matrix 5.3 is

δ∗ = 5 − 3

5 − 1
= 1

2
, δ̂ = 5 − 3

3 − 0
= 2

3
(5.24)

so that δ∗ < δ̂. Instead, from Matrix 5.4, you have that

δ∗ = 4 − 3

4 − 2
= 1

2
, δ̂ = 4 − 3

3 − 0
= 1

3
(5.25)

and therefore δ∗ >δ̂. However, it is worth noting that the difference between trigger strategies
and tit-for-tat ones is not a mere issue of relative stability as might seem to be the case from
(5.24) and (5.25): indeed, a tit-for-tat profile is, in general, unable to yield subgame perfect
equilibria as shown by Kalai et al. (1988).10

Matrix 5.3

2
l r

1 t 3;3 0;5
b 5;0 1;1

Matrix 5.4

2
l r

1 t 3;3 0;4
b 4;0 2;2
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5.4.4 Experimental evidence

Starting with Axelrod (1981, p. 309), the bottom line of repeated games – namely, that
repetition may endogenously solve the prisoners’ dilemma, inducing players to generate
Pareto-efficient equilibrium outcomes – has been tested in several controlled experiments,
which have singled out the following aspects.

1 The shadow of the future affects players’ behaviour in a way that appears to be closely in
line with theoretical predictions (see Dal Bo, 2005).

2 Yet, the matching procedure (be it random or not) among players involved in the exper-
iments is indeed important, as it emerges that agents that have never met before tend to
deviate more frequently than others that are already acquainted with each other (Yang
et al., 2007). In this respect, though, it must be said that there is no unanimity, as some
recent experiments show that cooperation can be sustained even in anonymous settings
(see, e.g., Camera and Casari, 2009).

3 If the payoff associated with reciprocal defection (i.e., with the Nash equilibrium of the
one-shot game) is negative, then players choose the dominated strategy – and therefore
collude – more frequently than otherwise. This seems to reveal the presence of a strong
risk aversion in players belonging to the samples involved in several experiments that
have exhibited this type of regularity (Sabater-Grande and Georgantzis, 2002 and Hauk,
2003).

5.5 The chain store paradox
The theory of repeated games has been used to work out the conditions for implicit collusion,
but it is also a powerful instrument to probe the robustness of other results, generated by
games other than the prisoners’ dilemma. In Chapter 4, we have encountered the issue of
strategic entry barriers in a one-shot game illustrated by Matrix 4.6. Here, we will revisit the
same problem in a more general framework where the entry game repeats over time: this is
the famous chain store paradox proposed by Selten (1978).

The structure of the constituent game is essentially the same as Matrix 4.6. Players are an
incumbent, I, and an entrant, E . The entrant may either enter (e) or not (ne); the incumbent
may either accommodate (a) or fight ( f ) entry. The resulting Matrix 5.5 is slightly more
general than Matrix 4.6, with the payoff sequence

πM >πd > 0 >πw (5.26)

with the negative payoff πw denoting the symmetric loss that firms will incur if, say, the
incumbent triggers a price war after entry has taken place.

As we already know, the one-shot version of this game has two pure-strategy Nash equilib-
ria: (e,a), where a duopoly obtains; and (ne, f ), where the incumbent remains a monopolist.
However, given the chain of inequalities in (5.26), the threat of adopting an aggressive

Matrix 5.5 Selten’s entry game

I
a f

E e πd;πd πw;πw

ne 0;πM 0;πM
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behaviour is not credible, as f is a weakly dominated strategy for the incumbent. Con-
versely, the outcome (e,a) is in weakly dominant strategies and is also subgame perfect in
the sequential play version of the game, with the entrant moving first. The proof of this result
is omitted for brevity as the game tree replicates Figure 4.2.

So far, no big news. The novelty of Selten’s approach to the analysis of strategic entry
barriers consists in admitting the realistic possibility that the entry game be repeated, either
over time or on several markets. That is, Selten builds up a supergame that summarizes in a
single set-up two alternative but formally equivalent situations:

• The incumbent owns a single outlet and faces a repeated entry threat by either the same
potential entrant or a population of symmetric ones, in a single market.

• The incumbent owns many identical outlets in as many identical local markets, and faces
a threat of entry by either the same potential entrant or a population of symmetric firms,
one in each single market.

The second interpretation of the supergame is responsible for the label that Selten chose for
his model, known as the chain store paradox.

In this set-up, calendar time and space – or the number of markets – are formally equiva-
lent and can be interchanged with one another without affecting the result. Therefore, in line
with the spirit of this chapter, I will treat the problem as a repeated game and refer to time
instead of space. Having settled this issue, the problem is then whether the game repeats over
a finite or infinite horizon. On the basis of Remark 5.1, and without dwelling upon the details
of the proof, I may claim the following remark.

REMARK 5.2 If the entry game is repeated over t = 0,1,2,3 . . . , T, the equilibrium in
weakly dominant strategies of the one-shot game obtains at all times.

This amounts to saying that, over a finite horizon, entry occurs in each period, the incumbent
being altogether unable to build up a credible entry barrier.

What if the supergame lasts (or is perceived to last) forever? In such a case, it is indeed
possible for the incumbent to fight one day and remain a monopolist henceforth. To see this,
suppose I and E share the same time preferences, measured by the discount factor δ ∈ [0,1].
The discounted profit flow accruing to the incumbent if entry takes place in each period is
measured by

�d =
∞∑

t=0

δtπd = πd

1 − δ
(5.27)

Alternatively, the incumbent may fight at t =0. If this discourages the entrant, by persuading
the latter that any entry will trigger an aggressive response (say, a price war),11 the resulting
discounted profit flow for the incumbent is

�w =πw +
∞∑

t=1

δtπM =πw + δπM

1 − δ
(5.28)
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Aggressive behaviour is rational if �w ≥�d, that is, if the following condition is satisfied:

δ ≥ πd −πw

πM −πw
≡ δw ∈ (0,1) (5.29)

On the basis of (5.29), one may draw the conclusive claim contained in the following remark.

REMARK 5.3 If the entry game repeats infinitely many times, the incumbent will fight
entry in the first period – retaining thus monopoly power over t ∈ [1,∞) – for all δ ∈ [δw,1].

The structure of this supergame replicates that of Friedman’s theorem to reach a con-
clusion that has a completely different flavour as compared to collusive stories. Here, the
shadow of the future reveals to the incumbent whether it is convenient to give up a slice of
current profits to preserve future ones by adopting an aggressive behaviour on the very first
day. Because of complete information, the entrant is able to (i) deduce whether the incum-
bent has the incentive to adopt this line, and (ii) correctly guess whether to enter or not at the
(unique) subgame perfect equilibrium.

Further reading

The literature on repeated games is so large that any attempt to list all the relevant contri-
butions is doomed to failure. An overview of the fundamental steps of this branch of game
theory is given in Fudenberg and Tirole (1991). An elegant and reader-friendly introduction
to optimal punishments can be found in Gibbons (1992), while exhaustive surveys of appli-
cations to oligopoly supergames are given in Martin (1993, 2002). A very interesting and
somewhat informal read is Axelrod (1984). For a discussion of antitrust rules in the USA,
the EU and Japan, see Bork (1966), Martin (1998) and Iyori and Uesugi (1983).
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A politician needs the ability to foretell
what is going to happen tomorrow,
next week, next month, and next year.
And to have the ability afterwards
to explain why it didn’t happen.

Sir Winston Churchill

It’s not up to me to say whether Sir Winston was right or not, but this quote provides a some-
what spirited introitus to a chapter dealing with a game-theoretic approach to politics. Not
unlike firms, political parties also pursue the attainment of specific goals (winning elections,
maximizing consensus, remaining in government for as long as possible) and design their
strategies accordingly.

Parties offer political platforms to voters very much like firms offer products to consumers,
so that consensus and demand are two closely related phenomena governed by either voters’
or consumers’ preferences, respectively. Definitely, the whole matter boils down to shares, in
both cases. In order to ‘sell’, parties have to invest money in electoral campaigns that closely
resemble firms’ advertising campaigns to modify consumers’ preferences. The only essential
difference is that economic markets operate through a price mechanism that does not appear
in politics.

After a synthetic exposition of the astonishing paradoxes that inherently affect voting
procedures, I will drive you through an introductory analysis of the strategic interplay tak-
ing place in a stylized two-party system, with parties (or their candidates) striving to win
elections and gain the office at stake. These games closely replicate the basic features of
analogous ones where firms invest in advertising, and also share with the latter the key fea-
ture of being socially inefficient, as strategic incentives lead players (be they firms or political
parties) to overinvest as compared to what would be both socially and privately efficient.

Relatedly, any administration would definitely prefer to remain in office, and to this end
might decide to make strategic use of public announcements in the lead-up to new elections,
in order to stay in power. Indeed, there are announcements that we should not take at face
value.

6.1 Voting paradoxes
I will set out by telling you a well-known story about a historical event that most of you
are likely to be familiar with. In 1976, Jimmy Carter won the US presidential elections
against Gerald Ford. The latter had previously obtained the nomination by the Republican
party, defeating Ronald Reagan. According to the polls, Reagan would have made it to the
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White House (in fact, he did, but later, in 1980). Yet, the Republicans lost the 1976 elections
because they preferred Ford to Reagan.

This specific event is an example of a cyclical problem affecting majoritarian systems
where candidates are matched pairwise, and the final outcome only depends upon the match-
ing order. This phenomenon is known as the paradox of voting, or the Condorcet paradox,
named after Monsieur le Marquis de Condorcet, who formalized it in 1785. It is not a game,
but still it is a pillar of social choice theory, and therefore it must have a place in any book
dealing with the formal analysis of political behaviour.

To appreciate what this paradox is about, one first has to understand the definitions
of transitivity and transitive relation in mathematics. As an example, take the integers,
1,2,3, . . . , N . In the realm (or, more rigorously, in the domain) of integers, the relations
‘is greater than’ and ‘is at least as great as’ (represented synthetically by the symbols >

and ≥, respectively) are transitive, as we can correctly state that, taking any three integers
A, B and C :

if A > B and B > C, then A > C (6.1)

and, similarly, if A ≥ B and B ≥C, then A ≥C . For instance, the triple (A =3, B =2,C =1)

satisfies (6.1). There are of course many relations that are not transitive. One is ‘to be the
son of’: if John is the son of Robert, and Robert is the son of George, then John is not the
son of George.

Now let’s go back to Condorcet and consider the relation ‘to be preferred to’, summarized
by the symbol � . I invite you to examine an electoral problem with three voters, a, b and c,
and three candidates, α, β and γ . The voters’ preferences are as follows:

• a: α � β � γ

• b: β � γ �α

• c: γ � α �β

The above list of preferences is indeed cyclical, and majority voting yields no clear-cut
solution. Indeed, should any of the three candidates be selected as the winner, there would
arise strong (and sound) objections: if candidate α were chosen, two voters (b and c) would
yell that they prefer candidate γ . The very same argument applies to the choice of the other
two candidates, and cyclicity results in a three-way tie across candidates, with majority
voting leading to a stalemate.

Condorcet proposed a way out of the paradox – known as the Condorcet method – in
order for majority voting to yield a winner. In summary, the method consists in pitting every
candidate against every other candidate in a series of imaginary one-on-one contests, with
pairwise counting. I will not delve into the details of the different procedures that can be
adopted to solve the paradox, but this way out is precisely what is being adopted in the US
presidential elections and elsewhere – yielding a winner, but not necessarily selecting as such
the candidate who would have the largest consensus across the population of voters.

A direct, although much later, follow-up to the Condorcet paradox is Arrow’s impos-
sibility theorem, or Arrow’s paradox (Arrow, 1951). Arrow’s theorem proves that, when
voters face three or more options, there exists no voting system capable of converting indi-
vidually ranked preferences into a community-wide ranking while also meeting a certain set
of criteria. An equivalent formulation of the theorem is that, in the absence of restrictions
on either individual preferences or neutrality of the constitution as to feasible alternatives,
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there exists no social choice satisfying a set of seemingly plausible requirements. The result
generalizes the Condorcet voting paradox.

To make things as simple as possible, one has to think that the subject of Arrow’s theorem
is the problem of aggregating in an acceptable and satisfactory way the preferences of a
number of individuals. This aggregation procedure is supposed to produce a system of what
this literature calls social preferences, through some generally accepted mechanism that is
labelled as a social welfare function, which has to meet a set of sensible conditions or rules.
The complete list of such ‘plausible requirements’ includes the following.1

• Universality (or, unrestricted domain): given any set of individual preferences, the com-
mon social welfare function should yield a unique and complete ranking of societal
choices, in such a way that (i) the ranking of preferences for society is complete, and
(ii) the same social ranking of alternatives emerges each time voters’ preferences are
presented the same way.

• Independence of irrelevant alternatives: the social welfare function should rank alterna-
tives α and β in the same order, irrespective of whether one or more additional alternatives
(say, γ,η, . . .) are being evaluated.

• No dictatorship: the social welfare function should never reflect the preferences of a single
individual (unless in the very special case of unanimity).

• Monotonicity (or, positive association of individual and social preferences): this rules out
the possibility for an individual to damage any alternative by ranking it higher.

• Citizen sovereignty (or, non-imposition): intuitively, this means that any social preference
ranking should be achievable starting from some set of individual preferences.

The following theorem is the startling result stated in Arrow’s theorem.

THEOREM 6.1 (IMPOSSIBILITY THEOREM) Given a population of at least two voters
facing a set of at least three alternatives, there exists no social welfare function meeting
simultaneously the five requirements listed above.

A useful exercise for you is this: go back to the example used in connection with the
illustration of Condorcet’s paradox, and try to find out what conditions are violated by it.

So, consider an alternative interpretation of Arrow’s impossibility theorem, by consid-
ering the historical phase and the context in which Arrow conceived his theorem. At the
turn of the 1950s, the core issue was the political and eventually even military confrontation
between West and East, between the USA and the USSR. As we already know from Chap-
ter 1, the Cold War prompted an enormous stream of research in several fields, including
the social sciences. Many prototypical games are the outcome of that age, and bear given
names that are meant to produce a screen of fog between insiders (those involved with the
harsh business of learning how to win the Cold War) and outsiders (people like me, working
in the ivory tower of the academy). Well, the impossibility theorem can also be examined
in this light. One way of reading it is that a dictatorship decides what to do definitely faster
(if not necessarily better) than a democratic system, the latter being obstacled by the above
‘plausible requirements’, including the no-dictatorship condition. An appalling view, isn’t
it? Of course, this is not reflected in the vulgata of Arrow’s theorem that circulated in those
years. Rather, its interpretation was that a benevolent dictator (or a social planner) aiming at
the maximization of social welfare could succeed in disentangling socioeconomic problems
that would otherwise produce inefficiency and sluggishness if left to individuals with private
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and reciprocally incompatible goals (in Chapter 4 you have encountered plenty of examples
of this nature).

Now that it’s clear how problematic it is to choose social welfare functions to aggre-
gate individual votes, let’s see how firms behave strategically to gain the largest possible
consensus.

6.2 A spatial model of political competition
The best party is but
a kind of conspiracy
against the rest of the nation.

Lord Halifax

Do you remember the Hotelling duopoly model I laid out in Chapter 4 to illustrate firms’
incentives to differentiate their products and invest in advertising? Take it off the shelf
again, strip it of the price-setting stage, and what you get is the spatial model of political
competition dating back to Downs (1957, chapter 8).2

Examine the following two-party electoral competition game. Players are two parties,
labelled L and R (standing for Left and Right, respectively). Alternatively, one can think
of the linear segment as a measure of the intensity of any given policy, for instance fiscal
policy: if so, then point 0 represents a situation where fiscal pressure is absent altogether,
while point 1 is the opposite (and purely hypothetical) situation where, say, income taxation
is 100 per cent. In this example, I will stick to the idea that the Hotelling–Downs segment
represents the spectrum of all possible political colours.

Parties choose their respective platforms xR ≥ xL , with xL ∈ [0,1/2] and xR ∈ [1/2,1].3

Let the unit interval describe the space of the electors’ political preferences, ranging from the
extreme left (0) to the extreme right (1). Voters are uniformly distributed over the interval,
with density d in each point, so that the total number of votes is d · 1 = d . For the sake of
simplicity, suppose everyone indeed votes (either for party L or for party R), so that the
total amount of votes is equal to d.4 The generic voter, located in point m ∈ [0,1], votes
for the party (or the candidates) whose electoral platform xi maximizes the following utility
function:

U = s − t (m − xi )
2 (6.2)

where s > 0 is the gross value that any individual voter associates with the fact itself of
voting, while parameter t > 0 measures the disutility of voting for a party whose platform
differs form the voter’s ideal one.

The voter who is indifferent between candidate L and candidate R is identified by the
equation:

s − t (m̃ − xL )2 = s − t (m̃ − xR)2 (6.3)

which can be solved to identify the position of such a voter:

m̃ = xL + xR

2
(6.4)
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All this immediately involves the following result.

REMARK 6.1 The votes of the electors located between xL and xR split evenly between
the two parties or candidates.

It is worth stressing that, in the original Hotelling model with price competition in the
market, this result obtains only in the very special case where firms’ prices are identical.
Yet, what is really interesting of Remark 6.1 is what it doesn’t explicitly state, namely, that
each party has its own private backyard (or hunting ground), measured by xL for the Left
and 1 − xR for the Right, respectively. In each of these two ranges, the party located to
the boundary of it is an unchallenged master, but the ultimate outcome of the elections is
determined by the population of voters whose consensus is, so to speak, contestable.

A distinctive feature of the model is therefore that each candidate cares only about the
outcome of the election – the distribution of votes across the candidates – and, unlike the
voters, not about the specific position of the winning candidate. In a sense, candidates and
parties do not internalize the external effect their behaviour produces for the community as
a whole. What matters is solely winning the elections. In the remainder, I will come back to
this crucial aspect.

Now we can proceed to determine the partition of votes, vL and vR, for a generic pair of
political platforms. All voters to the left of m̃ will vote for candidate 1, while the remainder
of them, from m̃ to 1, will patronize candidate 2. Therefore,

vL = d(xL + xR)

2
, vR = d

(
1 − xL + xR

2

)
(6.5)

From (6.5), it appears that vL increases with xL , while vR decreases with xR . This amounts to
saying that the Left has an incentive to relocate rightwards, while the Right has an incentive
to relocate leftwards. By doing so, each party hopes to (i) maximize the size of its own private
backyard and, at the same time, (ii) subtract as many votes as possible from the rival in the
contestable sub-interval between xL and xR . Also note that any symmetric pair of platforms,
with xL = 1 − xR, is such that vL = vR = d/2. Therefore, there seems to be room here for
the median voter at 1/2 to be playing a pivotal role in determining the winner.

Now take a look at Figure 6.1, which captures the essential features of this game. In
particular, the two arrows illustrate the dynamics of both parties along the unit segment.
Given the dynamics affecting parties’ incentives as to their positions along the segment,
their respective initial locations are in fact altogether immaterial.5

The relocation tendency affecting both parties alike (although with opposite sign) ulti-
mately leads both of them to design a political platform that exactly fits the preferences of

xL xR0 1/2 1

median
voter

Figure 6.1 The Hotelling–Downs segment
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the median voter (again, the ‘middleman’) located at 1/2, as summarized in the following
remark.

REMARK 6.2 (MEDIAN VOTER THEOREM) At the Nash equilibrium of the Downs game,
both parties’ electoral platforms coincide with the median voter’s.

This simple exercise explains the reason why, in real-world cases, more often than not,
platforms are so similar to each other when it comes to relevant issues such as economic
policy or foreign affairs. The intuitive interpretation of this outcome can be spelled out on the
basis of the demand effect we have met in Chapter 4 while examining the Hotelling model:
since here there are no prices, what matters is only to capture the attention of the middleman,
and the gravity attraction exerted by the latter univocally determines the behaviour of parties.
However, note that, as soon as xL = xR = 1/2, all voters are in fact totally indifferent as
to which party to patronize precisely because Left and Right have become identical in all
respects. This entails two related consequences:

• if xL = xR = 1/2, the median voter is not necessarily pivotal, while (or, because)
• any voter is potentially pivotal.

Shall we take the result of the median voter theorem for granted, i.e., shall we buy it at its
face value, or is there more to it? This delicate issue is the subject of the next section.

6.3 The robustness of the median voter theorem
As I have mentioned above, the linear segment may represent the set of all admissible policy
stances a party or candidate may take, concerning the pension system, income taxation, etc.
If this is the interpretation of the Hotelling–Downs model, then the first possible extension
consists in allowing for more dimensions to jointly define a candidate’s political platform. It
can be shown that the basic result is robust to such a generalization (see Davis et al., 1972;
Hinich et al., 1972, 1973; Slutsky, 1975; Austen-Smith, 1983; Calvert, 1985; Ansolabehere
and Snyder, 2000), although in this case a pure-strategy equilibrium may not exist – the
mixed-strategy equilibrium has been investigated by McKelvey and Ordeshook (1976) and
Kramer (1978).

If voters (or their preferences) are not uniformly (or even symmetrically) distributed along
the segment, then there is no guarantee that the median voter theorem may hold. The last 50
years of Italian politics constitute an evident illustration of the consequences of polarizing
political preferences: while during the so-called First Republic (roughly, over the period
1950–1990) the distribution of political tastes was clearly single-peaked and symmetric
around the midpoint, the collapse of the Christian Democrats gave way to a polarized set-up
lasting to the present day.

The possibility that the median voter may lose his/her role as an attraction point in situ-
ations in which it is not the case that every citizen votes with absolute certainty for his/her
favourite candidate was first pointed out by Hinich (1977), where the probability that any
citizen votes for any given candidate is taken as a primitive, i.e., it is exogenously given
(following, in this respect, Hinich et al., 1972). This contribution opened up an alternative
approach, known as the probabilistic voting framework (see Coughlin, 1990, 1992; Patty,
2005; Schofield, 2006; inter alia).

Another, quite sensible, extension of the basic model, which may represent a serious chal-
lenge to the appeal exerted by the median voter, is that where each candidate does have an
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ideological stance (an ideal position along the segment) that he/she may modify or abandon
only at some cost. This view dates back to Wittman (1977, 1983, 1990) and has been inves-
tigated extensively (see Calvert, 1985; Roemer, 1994). The simple game we are about to
examine is loosely based on Lambertini (2007).

6.3.1 An electoral game with ‘platform stickiness’

The aim of this digression is to extend the traditional spatial approach à la Hotelling–Downs
in order to investigate the bearings of parties’ traditional platforms, as inherited from history,
on their strategies and ultimately on the outcome of electoral competition. When I refer to the
presence of traditional platforms, I mean the following. Any given party may take from its
past history some essential features conditioning its views on relevant policy issues, such as
monetary and fiscal policy, welfare, foreign policy, etc., so much so that they end up shaping
to a large extent the choice of such a party’s platform during the elections. This aspect, close
in spirit but not equivalent to Wittman’s approach (and its follow-ups), may in fact play a
relevant role, as can be easily ascertained on the basis of casual observation.

For instance, a phenomenon of this type clearly emerges if one takes a casual look at
the political elections held in Italy in April 2006, with particular regard to the behaviour
of the centre-left during the last two weeks of the electoral campaign, when Mr Romano
Prodi’s public speeches and declarations were increasingly stressing the need to increase
fiscal pressure (or introduce new taxes) on large patrimonies and high incomes so as to
make the income distribution in Italy less unfair. Exactly how large such patrimonies were
supposed to be remained a vague concept until the new government issued the new fiscal
law. Yet, these declarations of intent produced the effect (predictable but clearly – and quite
strangely indeed – unforeseen by the centre-left itself) of decreasing their margin of con-
sensus over the centre-right coalition to such an extent that the outcome of the elections
was pretty tight, being determined by a few thousand votes only. It is a widely accepted
interpretation that such declarations were dictated not by a risk-loving attitude but rather
from the will (or need) to satisfy some intrinsic (or tradition-driven) requirements of some
components of the coalition led by Mr Prodi.

Having motivated the exercise, let’s turn to the formal side of it. The model closely reflects
the Hotelling–Downs set-up outlined above, with a linear segment [0,1] along which voters
are uniformly distributed with density d, and abstentions are assumed away. However, in the
present case there are two novel features that play a role in shaping parties’ behaviour and the
outcome of elections: historical traditions, and the related costs of moving away from them.

For the sake of simplicity, we may suppose that parties L and R have their respective
historically determined locations (or ideological stances) at 1/4 and 3/4, respectively, along
the unit interval. If each party sticks to its respective historical heritage, then voters split
evenly across parties (or candidates), with vL = vR = d/2, as in the original model, except
that here parties are not meeting the tastes of the median voter.

Now, the point is that each party has the possibility of abandoning (or, to some extent,
betraying) its historically inherited stance to move rightwards or leftwards to reach 1/2,
responding thus to the gravitational attraction exerted by the median voter. To do so, a party
must bear a positive cost C that quantifies the psychological unwillingness to abandon con-
solidated traditions. Accordingly, the utility functions of the two parties or candidates can be
written as follows:

uL =
{

vL (1/2, xR)− C if xL = 1/2

vL (1/4, xR) if xL = 1/4
(6.6)
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and

u R =
{

vR(xL ,1/2)− C if xR = 1/2

vL (xL ,3/4) if xR = 3/4
(6.7)

where, for the moment, the rival’s location is generic. In order to compute the exact volumes
of votes, one has to recall that any voter located in the interval [0, xL ] votes for the Left,
while any voter in [xR,1] votes for the Right, while the subpopulation of voters in (xL , xR)

splits evenly. The list of all possible cases is as follows:

• xL = 1/4 and xR = 3/4, whereby uL = u R = vL = vR = d/2;
• xL = xR = 1/2, whereby vL = vR = d/2 and uL = u R = d/2 − C;
• xL = 1/2 and xR = 3/4, whereby vL = 5d/8, vR = 3d/8 and uL = 5d/8 − C , u R = 3d/8;
• xL = 1/4 and xR = 1/2, whereby vL = 3d/8, vR = 5d/8 and uL = 3d/8, uR = 5d/8 − C.

Of course, given that 5d/8 > 3d/8, unilateral relocation by either party when the rival is
sticking to its tradition pays off in terms of the pure electoral outcome, but the costs involved
in relocation might well induce each party to remain at the location inherited from the past.
The essence of strategic interaction is captured by Matrix 6.1.

Since C plays a key role, we have to see what happens for any admissible level of this cost
parameter. The key inequalities in determining the equilibrium outcome(s) of the game are

d

2
≷ 5d

8
− C, that is, C ≷ d

8
(6.8)

and

3d

8
≷ d

2
− C, that is, C ≷ d

8
(6.9)

so that the critical threshold of C is d/8 in both cases. Hence, for all C ∈ (0,d/8), strategy
1/2 dominates, and the unique Nash equilibrium is (1/2,1/2), with both parties relocating
in correspondence to the median voter. Otherwise, for all C > d/8, the unique equilibrium
is such that both parties stick to their respective traditional platforms.

Additionally, since obviously d/2 > d/2 − C for all values of C , then, whenever the
pair (1/2,1/2) is the equilibrium, the game is a prisoners’ dilemma (i.e., the equilibrium
is Pareto-inefficient as the parties bear the costs of relocating towards the median voter,
to no avail). Conversely, if the equilibrium is (1/4,3/4), this game is never a prisoners’
dilemma, in that the parties avoid wasting resources and the equilibrium outcome is indeed
Pareto-optimal.

Matrix 6.1 The ‘platform stickiness’ elec-
toral game

R
3/4 1/2

L 1/4 d/2;d/2 3d/8;5d/8 − C

1/2 5d/8 − C;3d/8 d/2 − C;d/2 − C
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Matrix 6.2 The game with asymmetric
stickiness

R
3/4 1/2

L 1/4 d/2;d/2 3d/8;5d/8

1/2 5d/8 − C;3d/8 d/2 − C;d/2

This fully symmetric model yields alternative but still fully symmetric equilibria. In order
to observe asymmetric equilibria one has to modify the set-up so as to allow for the possi-
bility that one of the two parties or candidates does not bear any relocation costs – that is,
tradition is not a burden to worry about, either for the Left or for the Right.6 Let’s say this
holds for the Right. In such a case, the game modifies as in Matrix 6.2.

Now strategy 1/2 is always dominant for the Right, while the Left has to evaluate the
same inequalities as above. Hence, the game yields a unique equilibrium in strictly dominant
strategies, the equilibrium outcome being either (1/2,1/2) for all C ∈ (0,d/8) or (1/4,1/2)

for all C > d/8.

To sum up, I state the following remark.

REMARK 6.3 If historical heritage matters exactly the same for both parties, equilibrium
platforms will both coincide with the median voter’s tastes provided that relocation is not too
costly. If there arise asymmetries in relocation costs, then the party whose perceived costs
are lower will always satisfy the median voter’s preferences, while the other may not, thus
giving rise to an asymmetric platform pair at equilibrium.

6.4 Electoral campaigns
Politics is not a game.
It is an earnest business.

Sir Winston Churchill

In Chapter 4, we have seen how strategic interaction may lead oligopolistic firms to carry
out excess investment in advertising. The very same phenomenon can be observed as well
in electoral competitions where parties invest in long and costly campaigns to conquer the
citizens’ votes.

The simplest way of grasping the intuition as to why the huge amount of resources (both
time and money) invested in electoral campaigning turns out to be both privately and socially
wasteful is to build up a highly stylized 2 × 2 game as in Matrix 6.3.

Parties L and R choose between two pure strategies, either investing or not a given amount
of money k to finance the electoral campaign. As a benchmark (which, by the way, has often
proven to be not unrealistic), let’s say that, in the absence of any investment by parties, the

Matrix 6.3 Wasteful efforts in elec-
toral campaign

R
0 k

L 0 50%;50% 25%;75%
k 75%;25% 50%;50%
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shares are symmetric, 50/50; and, in the asymmetric event, in which one party undertakes
the costly campaign while the other does not, this turns out to be decisive in terms of the final
outcome: the candidate of the party that invests outperforms the rival and ultimately gets into
office. The most problematic aspect of this story is that the remaining symmetric outcome
where both parties invest yields exactly the same shares as the one where no spending occurs
at all (on purpose, I also chose the shares corresponding to this outcome so as to remind you
about events you may have observed in recent times). The underlying hypothesis on which
this game is based is that parties raise external funds, say, from DrinkThis and TasteThat,
respectively, so that neither party really cares about expenditures to finance the campaign,
and the payoffs are solely specified in terms of consensus. Hence, Matrix 6.3 portrays once
again a prisoners’ dilemma, whose unique equilibrium in dominant strategies (k, k) indeed
entails wasting 2k without modifying the ex ante distribution of consensus across candidates.
Note that, leaving the shares of votes totally unmodified, this investment is inefficient in all
respects, i.e., both privately (for parties) and socially (i.e., from a collective standpoint).

6.5 How about being re-elected?

The government’s view of the economy
could be summed up in a few short phrases:
If it moves, tax it.
If it keeps moving, regulate it.
And if it stops moving, subsidize it.

Ronald Reagan

So far, I have reviewed games where candidates want to be elected. Another relevant matter
is to understand what they may do in order to stay in office when elections approach. This
observation prompts the analysis of an intriguing and potentially very dangerous endoge-
nous link between the design of any given policy (not necessarily of economic nature only)
and political consensus. A government can purposely design economic policy, or make
announcements about future economic measures, in order to be re-elected. The key ques-
tion is therefore whether these policies or announcements can be deemed credible or not.
This is a hot topic in the literature on macroeconomic policy and has received attention ever
since the 1980s,7 being closely related to the debate on rules versus discretion that we have
run across in Chapter 4 (see, in particular, Matrix 4.11).

The game we are about to look at is one where the two players involved are the party
in government (G) and the citizens/voters (V ), who may be relabelled as ‘the economic
system’. To keep things simple, let’s say that the policy menu is one-dimensional, the task of
the government being limited to determine the intensity of fiscal pressure on the aggregate
income generated by the economic system. The gross domestic product (GDP) is Y. The
government has two options: either to keep taxation at a given level T , or to eliminate it
altogether (strategy 0). Now suppose elections are approaching, and the premier publicly
announces that, if he/she gets re-elected, income will become tax-free. Voters may either
believe this announcement and confirm the current administration in office (strategy b), or
not (strategy nb). In the latter case, the rival party will win the next elections and design
fiscal policy according to its likings or needs. If voters have no specific information about
such likings or needs, they may attach equal probabilities to the two mutually exclusive
events, 0 and T .8
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Matrix 6.4 A game of announcements
and credibility

V
b nb

G 0 S;Y 0; 1
2
Y + 1

2
(Y − T )

T S + T ;Y − T 0; 1
2
Y + 1

2
(Y − T )

Voters’ utility is proportional to consumption C , which in turn is proportional to
disposable (i.e., after tax) income:

C = c(Y − T ) (6.10)

where parameter c is positive. On the other hand, the objective of the government is a com-
bination of two elements: to stay in office, S, and to raise money through taxes, T ∈ (0,Y )

(say, for financing public expenditure). Accordingly, this game can be represented through
Matrix 6.4.

The government is the row player while voters are the column player. Observe that the
two outcomes appearing along the second column coincide, as the voters are not buying the
announcement and therefore the other party wins the elections. Also note that voters have no
dominant strategy, since

Y >
1

2
Y + 1

2
(Y − T )> Y − T (6.11)

while the government has in T a weakly dominant strategy. So, in the absence of any cred-
ible commitment device to tie the hands of the government, we may expect a reconfirmed
administration to use the fiscal instrument at will no matter what was the message conveyed
by ex ante announcements. This latter piece of information is the key to the solution of the
game. After deleting the first row of the matrix, nb becomes dominant for voters, so that
we expect to observe a change in the administration, (T,nb) emerging as the equilibrium in
(weakly) dominant strategies, attainable by iteration.

There is more to it: the most sensible way of figuring out how a game like this works is
to think of it in terms of sequential play, with the voters moving first. After all, they have to
decide whether to confirm in office or not the current administration, which later, if still in
office, will have to decide what to do with the tax bill. Figure 6.2 illustrates the Kuhn tree of
the game, with voters at the root.9

Proceeding by backward induction, we may see that G’s best reply to b is to tax the
economy. Voters are well aware of this consequence because of complete information, and
consequently will opt for nb. The sequential play interpretation of the game thus yields
(T,nb) as the subgame perfect equilibrium under perfect information.

Essentially, what the extensive form adds to the picture is the interpretation of the fun-
damental story told by the game: once re-elected, the current administration will focus on
raising money through taxes, forgetting about any previous announcement that was solely
designed to achieve re-election. Anticipating this unpleasant consequence, and assessing the
non-credible announcement for what it really is, voters prefer to take a fair chance with the
opposition. To sum up, I may draw the following conclusion (quite alarming, alas).
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•V

G

b nb

0 T

S, Y S + T , Y − T

0, (2Y − T )/2

Figure 6.2 Announcements and credibility under sequential
moves

REMARK 6.4 Voters should not buy at face value any announcements not sustained by
credible commitments, as they are doomed to be systematically reneged upon.

Further reading

The issues treated in this chapter can be further investigated by having a close look at
Brams (1975, 1978), Ordeshook (1986, 1992), Morrow (1992) and Osborne (1995). A more
detailed (and a little bit more formal) treatment of the voting paradox can be found in Montet
and Serra (2003). A very nice read on the relationship between economics and politics is
Dunleavy (1991). There are further – virtually uncountable – relevant contributions adopting
a spatial approach to investigate other aspects of electoral competition: see, e.g., Bartholdi
et al. (1991), Weber (1997), Adams (2000), McKelvey and Patty (2006) and Huck et al.
(2006). For an analysis of probabilistic voting, see Adams (1999).
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We may anticipate a state of affairs in which two Great Powers will
each be in a position to put an end to the civilization and life of the other;
though not without risking its own. We may be likened to two scorpions
in a bottle, each capable of killing the other; but only at the risk of his own life.

Robert J. Oppenheimer

With this chapter, we enter the realm of international relations. Here, in particular, we will
deal with the class of problems that so strongly motivated research activity in game theory
in its early days.

Given the nature of the topics at stake and the size of the extant literature, I will be unable
to cover the existing material exhaustively, but I will give you what I hope will prove to be a
stimulating perspective on a set of crucial and far-ranging issues that remain the focus of the
political scientists’ attention.

As an appetizer, we’ll start with two games describing important episodes of World War II.
These games are representative of the effort made by game theorists at the outset of the Cold
War to ‘sell’ game theory to decision-makers. To do so, applied research in this field had to
prove itself able to reconstruct historical facts with a high degree of precision.

In the remainder of the chapter, I will review several games sharing the same leitmotiv,
namely, escalation. These are games that have been elaborated – if not necessarily in the
form you will see here – during the crises they were meant to interpret. Accordingly, the
second part of the chapter brings to the fore the predictive or normative power of the theory.

The first of these escalation games is not really a game but an auction, with a highly
stylized model being chosen with the explicit purpose of illustrating that there are situations
in which one would better never ever get involved. The following two games portray the
Cuban missile crisis and the European one, both critical turning points of the Cold War. The
last set-up models an aspect that is still of interest nowadays: the possibility for a nation to
endow itself with a shield against nuclear strikes. The specific feature of this latter game
consists in shedding some light on the question whether supposedly defensive instruments
are indeed such or, instead, they have a quite different nature.

7.1 The battle of the Bismarck Sea
This game dates back to Haywood (1954), and offers a reconstruction of the military con-
frontation between US and Australian forces on one side and Japanese ones on the other for
possession of the Japanese base of Lae, located at the eastern end of New Guinea, during
World War II in the Pacific theatre (February–March 1943).



March 1, 2011 13:27 Pinched Crown A Page-98 GTSS_Chapters

98 Wargames

Lae

Rabaul

New Guinea

New
Britain

Bismarck Sea

Solomon Sea

cloudy

sunny

Figure 7.1 Schematic map of the battle of the Bismarck Sea

Since Lae was under siege and about to fall, the Japanese headquarters decided to try to
reinforce it by sending a naval convoy with troops and supplies, sailing from the largest base
remaining in Japanese hands in the Pacific, Rabaul, at the eastern end of New Britain.

The Japanese expected a reaction in the form of air strikes, and had to figure out how to
escape it. The convoy could sail along either the north route or the south route, both requiring
approximately three days to reach Lae from Rabaul. The only difference between them was
the weather, which was sunny along the south route and conversely cloudy along the north
one. Hence, bad atmospheric conditions could help the Japanese ships to sneak through and
relieve the sieged garrison. On the opposite side, the Allied expected the Japanese to send
resupplies to Lae (based on intelligence reports) and had to figure out the Japanese strategy
and try to intercept the convoy, based upon the very same information about the weather
forecast. A sketch of the situation is illustrated in Figure 7.1.

The strategies available to Allied bombers and the Japanese convoy are north (N ) and
south (S), and the strategic form of the game can be laid out on the basis of the expected
duration of the bombing raids. The players’ ex ante conjectures can be summarized as
follows:

• If both players choose S, that would result in complete annihilation for the Japanese, as
the Allied aircraft would immediately spot the convoy and bomb it for three days, thanks
to good weather.

• If both choose N , the bombing raids would last for two days only because one would be
eaten up by bad weather hiding Japanese ships.

• If the Allied Command should initially send its bombers southwards while the Japanese
convoy is actually sailing along the north route, only a one-day window would be left
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Matrix 7.1 The battle of the
Bismarck Sea

JC
N S

AB N 2 2
S 1 3

open for raids, one day being wasted by the bombers to redirect north, another day being
again wasted due to bad visibility.

• Finally, should the bombers initially go north while the convoy is already following the
south route, two days would be available to Allied bombers to strike the convoy, as they
only waste one day looking for the ships north of New Britain.

The strategic form of the game is thus as in Matrix 7.1. Players are the Allied bombers (AB)
and the Japanese convoy (JC), and information is imperfect, complete and symmetric.

Since payoffs are measured by the expected number of bombing days, the Allied forces
want to maximize them, while the Japanese want to minimize them. Also, note that the
present model is a constant-sum game (i.e., strictly competitive) and therefore one may indif-
ferently solve it using either the Nash equilibrium or the maximin (or minimax) criterion à la
von Neumann. Additionally, a quick look at the matrix reveals that N is a weakly dominant
strategy for the Japanese convoy. Hence, after deleting the left column, N emerges as a domi-
nant strategy for the Allies. As a result, the game yields a unique Nash equilibrium in weakly
dominant strategies, (N , N ), attainable by iteration. This outcome coincides with the facts,
the Japanese convoy being disastrously bombed by Allied aircraft. And, as a consequence of
the lack of resupplies and reinforcements, Lae fell.1

This example illustrates the general mood characterizing the work of game theorists as
well as other scientists operating with the RAND Corporation and ONR immediately after
the end of World War II. The possibility of reconstructing well-known historical events as
games or, more generally, formal models, was the prerequisite for a more ambitious project,
where the same tools were to be used so as to suggest to the executive power the best strategy
in virtually any possible critical scenario. That is to say, proving the descriptive power of this
(or any other) theory was the necessary condition to consolidate the view that the same theory
also had a reliable normative capability.

7.2 Overlord
Take calculated risks.
That is quite different from being rash.

George S. Patton

As many of you may know, General Patton was not directly involved in the amphibious
landings of Overlord, but he indeed played a key deception role to induce the Germans to
believe that the objective of the invasion force that was due to cross the English Channel
was not Normandy but rather the Pas de Calais. Correctly anticipating the location of Allied
landing zones was the biggest question for the Germans to answer (besides of course the
situation along the Eastern Front). Of course, the most obvious option was the Pas de Calais,
but this was even too clear to both Allies and Germans. Therefore, the Allies could indeed
prefer the longer route leading to the beaches of Normandy. The game we are about to see,
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Matrix 7.2 The Overlord game:
Normandy or Calais?

Germans
C N

Allies C 20;80 100;0
N 80;0 60;20

building upon Dixit and Nalebuff (1991, chapter 7), describes the strategic interplay between
the Allies, choosing where to direct their strike, and the Germans, choosing where to locate
the scarce resources to oppose the landing.2

Define as {C, N }, standing for Calais and Normandy, respectively, the set of admissible
pure strategies for both players, Allies and Germans. The a priori probabilities of success
for the Allies are the following:

• 80 per cent if both players choose N ;
• 20 per cent if both players choose C;
• 100 per cent if the Allies choose N while the Germans choose C;
• 100 per cent if the Allies choose C while the Germans choose N .

This means that, if the Germans concentrate their forces in the ‘wrong’ place, the invasion
succeeds with certainty; otherwise, if the Germans choose the ‘right’ locations, the Allies’
chances are higher in Normandy than at the Pas de Calais.

To build up the associated payoffs appropriately, suppose that the Allies attach a higher
value to landing at the Pas de Calais than in Normandy (because the former is closer to
Germany than the latter). So, a successful landing operation at the Pas de Calais is worth
100, while an analogous event in Normandy is worth only 80. Given the prior probabilities
of a successful invasion, the Allies’ payoffs in the symmetric cases are 0.75 × 80 = 60 in
(N , N ) and 0.2 × 100 = 20 in (C,C). The payoffs for the Germans are defined residually,
so that in (C,C) the Germans get 100 − 20 = 80, while in (N , N ) they get 80 − 60 = 20,

and so on.
Accordingly, the strategic form of the game is shown in Matrix 7.2. As for the previous

game, this is also a constant-sum one, and therefore we may use either the Nash equilibrium
or von Neumann’s minimax criterion to solve it.

It appears at first sight that the game yields no equilibrium in pure strategies, and
consequently one has to resort to mixed strategies. The Allies attach probability p to strat-
egy C (and the complementary probability 1 − p to strategy N ), while the Germans attach
probability q to strategy C (and its complement 1 − q to strategy N ).

From Chapter 3, we know that the Nash equilibrium in mixed strategies obtains by requir-
ing each player to set probabilities so as to make the rival indifferent over the entire set of
his/her pure strategies. In the present game, this means that the following condition must
hold for the Allies:

20q+ 100(1 − q)= 80q+ 60(1 − q) (7.1)

while the following must hold for the Germans:

80p= 20(1 − p) (7.2)
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Figure 7.2 The Overlord game in extensive form with perfect information
for the Germans

Solving the above system of equations with respect to q and p we get

p∗ = 1

5
, q∗ = 2

5
(7.3)

i.e., the pair of optimal probabilities identifying the mixed-strategy Nash equilibrium of
the Overlord game. As you see, this result implies that the level of strategic uncertainty
is higher for the Germans than for the Allies, as the latter almost certainly choose N , while
the Germans are not so far away from a 50/50 probability distribution. Relatedly, it is worth
stressing that, although the Germans can reconstruct the above calculations, this fact per se
does not help them so much, does it?

Thus far, the game exactly replicates the set-up in Dixit and Nalebuff (1991). To expand
and straighten the above argument, we can think of this game as one unravelling under
sequential play, i.e., perfect information. In particular, let’s say that the Allies are moving
first, choosing the beach for the landing: after all, it’s up to Eisenhower and Montgomery to
make the first move. This situation is illustrated in Figure 7.2.

This interpretation of the Overlord game relies on the property illustrated at the end of
Chapter 3, whereby a game that appears to have no Nash equilibria in pure strategies under
imperfect information does yield a pure-strategy subgame perfect equilibrium under perfect
information. The Kuhn tree in Figure 7.2 reveals that, if the Allies choose C, the best reply
for the Germans is to choose C . Mutatis mutandis, in the other subgame the strategies remain
symmetric, as N is the best reply to N . Therefore, because 60>20, the Allies opt for landing
in Normandy, and the subgame perfect equilibrium in pure strategies is (N , N ).

Having reviewed two games offering ex post recollections of historical episodes, we are
now acquainted with the descriptive power of games. Hence, we are ready to deal with other
examples designed with a much higher ambition, that of probing the predictive power of
game theory in the middle of a crisis.

7.3 Escalation as an all-pay auction
An arms race is a hall of mirrors

Richard Rhodes,
Dark sun
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In Chapter 4, I briefly discussed auction theory in relation to price competition. As you
may remember, auctions commonly end up with a winner who pays the first or second price
(depending on the structure of the auction), while losers go their way unscathed (if one
overlooks the non-negligible fact that they didn’t win). What I didn’t tell you in Chapter 4 is
that there are indeed other auctions, characterized by the property that losing bidders also pay
positive amounts. Typically, there exist two alternative auction forms with this feature, the
war of attrition and the all-pay auction. These auction forms share the common feature that
all losing bidders pay their bids exactly and differ only in the amounts paid by the winning
bidder. In the former, the winning bidder pays the second highest bid, while in the latter
the winner pays his own bid. Therefore, they are analogous to standard second-price and
first-price auctions, respectively, except that the auctioneer collects all bids at the end.

The archetypal escalation game is the prisoners’ dilemma illustrated by Matrix 2.2, which
describes the very basics of an arms race. The same issue can also be characterized as an
all-pay auction. This is precisely the subject of the famous dollar auction game formulated
by Shubik (1971).

The structure of the model is the following. Two players, 1 and 2, take part in an all-pay
auction where the auctioneer auctions off a single dollar bill. The starting bid is one cent, and
the step is one cent as well. The auction ends if no bid is made for a pre-specified amount
of time, and ties are ruled out. Observe that, under these rules, the bidding escalation may
never cease.

Now suppose player 1 opens up by bidding one cent for the dollar. If 2 doesn’t speak,
1 wins, pays the cent and walks away with the dollar, having effectively won 99 cents. What
happens if player 2 outbids 1, offering two cents? If 1 doesn’t reply, 2 wins, but 1 pays a cent
to the auctioneer. So, 1 takes his/her chances and offers three cents. This triggers a further
increase to four cents by player 2, and so on. Going on like this, the chain of increasing bids
will turn out as a sequence of odd numbers for 1 and even numbers for 2.

This process exhibits two critical stages. The first pops up as soon as the two players’ bids
are equal to 49 and 50 cents, respectively. Player 2 is winning, but there is an incentive for
player 1 to outbid the rival by offering 51 cents for the dollar. The critical nature of this stage
of the auction lies in the fact that, at such a moment, the overall sum crosses the break-even
point for the auctioneer. The second crucial stage is reached when bids are 99 cents and one
dollar, respectively. If player 1 stops bidding, player 2 wins the dollar and breaks even, but
player 1 actually loses 99 cents. Since losing one cent is definitely better than losing almost
a dollar, player 1 will bring the highest current bid beyond the intrinsic value of the object
being auctioned, by offering one dollar and a cent. This, of course, will meet a symmetrical
reaction by player 2, and beyond this point both players will surely be losing increasing
amounts of money.

In fact, the escalation process may keep going until players reach their reservation prices,
which can be thought of as the total amount of their financial resources. In Martin Shubik’s
own words (Shubik, 1971, p. 111):

This simple game is a paradigm of escalation. Once the contest has been joined, the odds
are that the end will be a disaster to both. When this is played as a parlor game, this
usually happens.

This is definitely a type of game people and nations should not play. However, history
shows that they did play escalation games, several times.3 The following two games portray
two well-known episodes of the Cold War, where to escalate or not was the question.4
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7.4 Mutually assured destruction and the Cuban missile crisis

Khrushchev reminds me of the tiger hunter
who has picked a place on the wall to hang
the tiger’s skin long before he has caught the tiger.
This tiger has other ideas.

John F. Kennedy

As we know from Chapter 1, researchers at RAND and ONR were involved in the analysis
of the Cold War as well as, to some extent, in the decision-making process that ultimately
shaped the behaviour of the White House. The same holds for their peers on the other side of
the Iron Curtain. The following games are not the outcome of ex post recollections of facts.
They were instead designed to interpret critical situations as they deployed.

Escalation was a leitmotiv of the confrontation between the USA and the Soviet Union
in the second half of the twentieth century, involving not only the armaments race in
itself but, parallel to it, the evolution of reciprocal attitudes about the effective use of such
arsenals. Here I will lay out a version of a famous game labelled as MAD (mutually assured
destruction), capturing this aspect in the crudest way.5

This game portrays the Cuban missile crisis of October 1962, when the Kennedy adminis-
tration had to face the threat posed by Soviet medium-range missiles with nuclear warheads
based in Cuba and almost ready for launching onto most of the US metropolitan territory.

Kennedy chose the route of a limited escalation in the form of a naval blockade, which
was further refined into a selective quarantine, contextually presenting Khrushchev and the
Kremlin establishment with the perspective of an open nuclear confrontation that would ulti-
mately lead to reciprocal annihilation. After 13 days, at the climax of the crisis, the Soviet
Union stepped back, agreeing to withdraw its missiles from Cuba in exchange for an anal-
ogous move on the part of the USA, involving the removal of its Jupiter missiles based in
Turkey (the latter being comparatively older and already planned to be replaced by much
more effective submarine-launched weapons).

The strategic form of the game is given in Matrix 7.3. Let the USA and USSR be the
row and column players, respectively. The status quo ante upon which the game is based is
that the USSR has set up some missiles in Cuba, thus sparking off the crisis. The strategies
available to the US administration are either to accept the status quo (a) or escalate (e)
by adopting an aggressive behaviour. The strategies for the USSR are withdrawal (w) or
escalation (e).

The figures measuring payoffs appearing in the cells of the matrix – although they may
look arbitrary – are indeed chosen so as to describe the situation appropriately. First of all,
note that −NW (the symmetric payoff accruing to both players in the case of nuclear war) is
negative and very large in absolute value. Second, each outcome appearing in the remaining
cells can be interpreted as follows.

Matrix 7.3 MAD and the Cuban mis-
sile crisis

USSR
w e

USA a −1;1 −1;1
e 10;−10 −NW;−NW
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• If the USA accepts the deployment of Soviet nuclear weapons in Cuba without any reac-
tion at all, then the distinction between withdrawal and escalation becomes immaterial to
the Kremlin, as the USSR has got what it was aiming for, i.e., the creation of a strategic
advantage for itself. This is reflected in their respective payoffs along the first row.

• If, instead, the US administration opts for some form of escalation, then the choice
between withdrawing or escalating symmetrically matters: in particular, a withdrawal
entails a cost to the USSR that outweighs the advantage it could possibly catch along
the first row. The alternative, of course, would be the end of the world as we know it
(in which case, most likely I wouldn’t ever have written this book and you wouldn’t be
reading it).

In Matrix 7.3 there are two Nash equilibria in pure strategies, (a, e) and (e,w). However,
the first relies on the adoption of a non-credible strategy by the USSR, because for the latter
strategy e is weakly dominated by strategy w. Since the White House knows it, as the game
takes place under complete information concerning strategies and payoffs, by adopting strat-
egy e this may force the Kremlin to withdraw. An alternative but equivalent way of putting it
is that, once the USA has chosen e, the USSR has to (i) accept that the first row of the matrix
has evaporated and consequently (ii) choose w.

We may sum up these considerations in the following remark.

REMARK 7.1 The outcome (e,w), besides being a Nash equilibrium, is also a (weakly)
dominant strategy equilibrium attainable by iterated deletion of dominated strategies, and
therefore qualifies as more credible or robust than (a, e).

The extensive form of the game will allow us to appreciate even better the crucial differ-
ence between the two Nash equilibria, and the reasons why one should expect the outcome
(e,w) to arise as the actual solution of the game. The Kuhn tree of the game is shown in
Figure 7.3.

Players move sequentially, with the USA at the root and the USSR operating at the inter-
mediate nodes under perfect information. This is the intuitive way of interpreting sequential
interaction, since if the USA accepts the presence of Soviet nuclear weapons in Cuba as a
fait accompli, then there is indeed no further interplay to wonder about. For this reason, the
right subgame (corresponding to the first row of Matrix 7.3) is truncated.

USA

USSR

e a

w e

10, −10 − N W, − N W

−1, 1

Figure 7.3 The extensive form of the Cuban missile
crisis game
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This makes it apparent that the Nash equilibrium (a, e) can be reached only if the USA
adopts a fearing that the USSR, being put under pressure, goes all the way to the bitter end,
engaging in a bilateral escalation process that leads to a nuclear holocaust. However, the
Kremlin may use the threat of adopting e as a leverage to solve the crisis in its own favour.
If the White House dismisses any reference to this regard as a non-credible announcement,
and forces the USSR to proceed along the left subgame by choosing e in order to unmask the
Soviet bluff, this selects (e,w) as the subgame perfect equilibrium of the game in extensive
form, mirroring what really happened at the end of the 13 days.6

This is no walkover, though. The behaviour of the White House during the Cuban missile
crisis relies on the idea that the adversary is a rational agent, at least rational enough to avoid
mistakes and step back in the face of the ultimate consequences of escalating. The existence
of multiple equilibria and the related presence of a mixed-strategy Nash equilibrium reveal
how risky a gamble this was for the players (both, not only the US administration). Once
probabilities are taken into account, can one rule out the chance of a nuclear confrontation?

To appreciate this aspect of the game, suppose that the Kremlin attaches probability q
to strategy w (and its complement 1 − q to strategy e). The USA is indifferent between a
and e if

−q− (1 − q)= 10q− NW(1 − q) (7.4)

yielding

q∗ = NW − 1

NW + 10
(7.5)

which belongs to the unit interval for all NW > 1 (and this has to be true as NW is supposed
to be very large). Moreover,

q∗ − (1 − q∗)= NW − 12

NW + 10
> 0 (7.6)

This result shows that, indeed, the White House could deem the event of the Kremlin adopt-
ing w as more likely than the alternative, but the latter could not be dismissed a priori with
absolute certainty.

7.5 The Euromissiles crisis
I do not believe that civilization will be wiped out
in a war fought with the atomic bomb.
Perhaps two-thirds of the people
of the earth will be killed.

Albert Einstein

Back in the 1970s, in the Brezhnev era, the Red Army developed a new type of medium-
range nuclear missile, the SS-20, designed to reach Rome, Paris, Bonn or London from its
mobile ramps located in or even beyond the Urals (their maximum range being 4400 km).
In other words, this missile was a ‘theatre’ weapon: resorting to the type of rhetorical mas-
terpiece that was commonly in use in those years, it could not be classified as a ‘strategic’
weapon because it could not reach US metropolitan territory. In view of this feature, the
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SS-20 was tailored to trigger and fight a nuclear war confined to Europe. As such, it repre-
sented an extremely dangerous instrument, in that it opened a new scenario in which both
Superpowers could sacrifice their respective allies without being directly involved in a global
thermonuclear war. All this amounts to saying that, while intercontinental (or submarine-
launched) ballistic missiles where an instrument of deterrence and, as such, constituted a
defensive weapon, the so-called Euromissiles (as the SS-20s quickly became known to the
public) had an inherently offensive connotation.

The deployment of the SS-20s was viewed by the European members of NATO as an
attempt on the part of the USSR to create a rift between them and the USA (the so-called
decoupling strategy), which would have led to acceptance of the idea of losing Western
Europe either to an invasion carried out through the overwhelming conventional forces of
the Warsaw Pact or as a consequence of a circumscribed nuclear war fed by Euromissiles on
both sides. That was a very delicate moment, as America was coping with the post-Vietnam
crisis and many believed that the odds were in favour of the Soviet Union more than ever
before.

At first, the US administration seemed keen on a quasi-symmetric reply based on the con-
struction of the neutron bomb, an extremely sophisticated and expensive piece of weaponry
lethal for human beings but supposedly not so aggressive for the environment as traditional
nuclear weapons. The strategic approach worked out anew specifically for it established that
it was to be employed against massive concentrations of enemy armour, if at all possible
when the latter were still forming up within the borders of the Warsaw Pact.7 The Soviet
Union had neither the economic nor the technological capabilities needed to build up the
equivalent themselves, and felt somewhat uneasy about the prospect of facing a number of
neutron bombs in Europe. A lively debate about these weapons arose in Germany and else-
where in Western Europe, and shortly afterwards President Jimmy Carter stopped the related
programme without even negotiating it with Moscow. This unilateral decision initially led
the Kremlin to believe that decoupling was indeed attainable.

The game envisaged by Leonid Brezhnev and his associates is represented by Matrix 7.4.
Pure strategies em and nem express the simple dichotomy between having some Euromis-
siles or not. As to the resulting payoffs, NWE stands for nuclear war in Europe, while GNW
stands for global nuclear war. Intuitively, it must be NWE < GNW, so that the game has two
pure-strategy Pareto-rankable Nash equilibria, (em, em) and (nem,nem), the first being in
weakly dominant strategies and Pareto-optimal.8 On this basis, the Kremlin was trying to
convince the White House to share its inclination towards a European conflict that would
turn out to leave Western Europe (admittedly, an awfully devastated one) in the hands of the
Red Army.

Once again, as in the Cuban missile crisis, the USSR was looking forward to hanging the
skin of the tiger in the living room without asking the tiger its own opinion. And, once again,
the USSR would have to step back, although in this case it would take much longer than it
had in October 1962.

Matrix 7.4 The Euromissiles game as seen from the Kremlin

USSR
em nem

USA em −NWE;−NWE −GNW;−GNW
nem −GNW;−GNW −GNW;−GNW
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Matrix 7.5 The Euromissiles game as seen from the
White House

USSR
w ho

USA em −NWE;−NWE −NWE;−NWE
nem 100;−100 −GNW;−GNW

To see why it happened, we have now to take the viewpoint of the White House. Given
that the crisis had been opened up by the Soviet Union (i.e., there were SS-20s ready to
launch in the Urals), the executive in Washington was looking at a game that did not reflect
Matrix 7.4, but rather Matrix 7.5.

While the USA has to decide where to install its own Euromissiles or not (say, across
Western Europe), the issue for the USSR is whether to withdraw (w) and ultimately disman-
tle its own SS-20s, or hold out (ho), possibly to the bitter end. The payoffs associated with
the outcome (nem,w) express the idea that a withdrawal would largely diminish the role and
influence of the Soviet Union and increase those of the USA at a global level.

Let’s suppose the following:

100 >−100 >−NWE >−GNW (7.7)

If so, then the game has two Nash equilibria, (nem,w) and (em,ho), the latter meeting
the tastes of the Kremlin. However, strategy ho is weakly dominated because of the above
chain of inequalities. Hence, the adoption of ho is not credible. Conversely, (nem,w) lies
along the Soviet Union’s weakly dominant strategies and is attainable by iteration. Thus,
(nem,w) is more credible than (em,ho) because of the dominance criterion, and coincides
with the historical outcome of the crisis, with the USSR agreeing to withdraw and dismantle
its problematic SS-20 arsenal.

The intuitive interpretation of this result is that, by rejecting the perspective of nuclear
confrontation in Europe, the USA put the USSR in the position of being held responsible
for the ignition of a nuclear holocaust, as any strike on a European member of NATO would
have necessarily triggered a response based on the only available instrument, namely the
intercontinental ballistic missiles (ICBMs) based in North America and their equivalent on
board nuclear submarines. The US refusal to get involved at all in the Euromissiles adventure
suddenly turned the SS-20s into a costly, useless and risky hardware to be thrown in the
garbage bin as soon as possible.

As a compensation, the USA withdrew the Pershing II and first-generation cruise missiles
installed in several NATO bases in Europe. This issue was debated, as some (politicians, the
press and part of public opinion) considered these weapons as the one-to-one counterpart
of the SS-20s. This view is questionable, as the range of such armaments was much shorter
than the 4000 km or more attributed to the SS-20s. Moreover, their payload was smaller, as
the single warhead of a Pershing varied between 5 and 50 kton,9 while each SS-20 could
carry up to five warheads, each equivalent to 250 kton.

Be that as it may, there are other relevant considerations to keep in mind, and I will briefly
outline them, although they stretch well beyond the scope of an introductory text like the
present one. Escalation in Europe during the Cold War consistently followed a precise rule,
of which both players were well aware. That rule maintained that, in view of the NATO
inferior endowments of conventional armaments, the deterrence against a conventional strike
by the Warsaw Pact should rely on tactical (i.e., short-range) nuclear weapons. That is to
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USA

USSR

nem em

w ho

100, −100 − G N W, − G N W

− N W E , − N W E

Figure 7.4 The Euromissiles game in extensive form

say, the threat of escalation was used to signal to the USSR that the ultimate responsibility
would fall upon the aggressor. This interpretation of nuclear weapons as defensive tools to
be used only after a first strike or an invasion extended – at least potentially – even to the
strategic component of the arsenal (such as submarines, ICBMs and the bombers controlled
by the Strategic Air Command). The US administration decided not to take chances in a
risky business and tied its hand, taking a strong commitment to using the strategic arsenal
upon aggression, the password being ‘burn bridges behind’.

REMARK 7.2 Credible commitments are a possible backbone of solid equilibria. Commit-
ting to an all-out nuclear strike by eliminating any possible intermediate step turned out to
be a credible measure at the climax of the Cold War.

As with the Cuban missile crisis, also here it can be shown that the equilibrium selected
by dominance is also selected by backward induction in the sequential play version of the
game, with the USA moving first. The extensive form appears in Figure 7.4.

Choosing strategy nem, the White House exploits the first-mover advantage to unmask
the Kremlin’s bluff, forcing the latter to recognize that withdrawal is better than ceasing
to exist. The outcome (nem,w) thereby emerges as the subgame perfect equilibrium under
perfect information for the USSR. Also, here the presence of multiple Nash equilibria raises
an issue as to strategic uncertainty. I leave to you as a useful exercise the task of computing
the related probabilities.

7.6 Hawks, doves and Star Wars
Towards the end of the Cold War (in the early 1980s, during the first Reagan administration),
the USA started a project known as SDI (Strategic Defense Initiative). The SDI’s objective
was to build up a composite defensive shield consisting of a mix of both ground-based and
space-based sophisticated weapons to protect the USA from nuclear strikes by enemy ballis-
tic missiles. Owing to its futuristic flavour, SDI became known to the public at large as Star
Wars.

At first, the project was heavily criticized. Many deemed it completely unrealistic and
unfeasible, but it did not peter out completely.10 During the Clinton administration, it was
relabelled Ballistic Missile Defense Organization. Subsequently, President George W. Bush
revived the project under yet another name, the National Missile Defense, announcing the
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Matrix 7.6 The benchmark game without
shields

B
p a

A p π;π −100;α
a α;−100 −50;−50

deployment of a new ballistic missile defense system in 2002. Some of the sub-programmes
embodied in this long list of long-run investment projects have indeed reached operational
capabilities, and have been successfully used in theatre operations from the First Gulf War
onwards (e.g., the ground-based Patriot missile system).

The SDI story lends itself pretty nicely to an analysis based on simple game theory
instruments. The following set-up is based on Chassang and Padró i Miquel (2009).

In a nutshell, the issue can be intuitively laid out as follows. Antiballistic shields are inher-
ently defensive instruments – at least at first sight – but can also be considered as dangerously
similar to aggressive weapons. The reason is that, say, if country A has a shield while coun-
try B hasn’t, then the former may conjecture that a nuclear strike on the latter could be
carried out successfully as any retaliation by B would be made ineffective by the shield.
Of course, B can anticipate this unpleasant consequence of asymmetry and either strongly
protest against the construction of a shield by A or build up one of its own (or both).11

In line of principle, these alternative scenarios generate three different games. In the first,
both countries are endowed with strategic nuclear weapons, but neither country has a shield.
In the second, one has built up a shield while the other hasn’t. In the third and last game,
both countries have a shield. In all cases, they choose between remaining peaceful (p) or
attacking (a). The first situation, where shields do not exist, is illustrated in Matrix 7.6.

The key to the interpretation of the game is the size of π relative to the other payoffs. If,
as common sense suggests,

π >α > −50 (7.8)

(revealing that all policy-makers are doves and value peace more than unilateral aggression),
then the matrix portrays a coordination game yielding two Nash equilibria, (p, p) and (a,a),

the first being Pareto-efficient. If instead

α >π > −50 (7.9)

the game is a prisoners’ dilemma solvable in dominant strategies, with (a,a) as the
unique equilibrium.12 This would be the result of a hawk’s attitude, whereby unilateral
aggressiveness is better regarded than a peaceful frame of mind.

Now suppose country A builds up a shield s. This increases (respectively, decreases) all
payoffs to A (respectively, B) in the case of war, so that the game looks as in Matrix 7.7.

The consequence is that having α + s > π becomes more likely: the hawk perspective
prevailing and resulting in a nuclear holocaust is a concrete risk. Observe that, if π >α, then
a fortiori π > α − s and therefore B would still contemplate the possibility of remaining
peaceful, but this intention is jeopardized by the hawks driving country A to war if indeed
α + s >π, with (a,a) standing out as the unique equilibrium.

As an overall appraisal, let me make one final remark.
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Matrix 7.7 Asymmetric Star Wars

B
p a

A p π;π −100 + s;α − s
a α + s;−100 − s −50 + s;−50 − s

REMARK 7.3 Star Wars are a risky business. Building up defensive shields is likely to
imply that hawks are in control.

The third game, where both countries have their respective shields, can be quickly dealt
with under the simplifying assumption that shields neutralize reciprocally and therefore we
are back to the same picture as in Matrix 7.6.13

To complete the assessment of this problem, look back at Matrix 7.6 and suppose
π >α >−50, so that the game poses a coordination issue. This, of course, prompts the
calculation of the mixed-strategy equilibrium. Since the game is symmetric, let’s consider
the perspective faced by country A, q∈ [0,1] being the probability that country B plays p.

Country A is indifferent between p and a if

qπ − (1 − q)100 = qα − (1 − q)50 (7.10)

yielding

q∗ = 50

50 +π −α
∈ (0,1) (7.11)

and

q∗ − (1 − q∗)= π −α − 50

α −π − 50
< 0 for all π >α + 50 (7.12)

The latter result entails that the probability of bilateral strike is higher than the probability of
safeguarding peace even if policy-makers are doves.

Now examine the game from the standpoint of risk dominance (you were asking your-
selves why I forced you to go through it in Chapter 3, weren’t you?). Evaluating the product
of the losses generated by unilateral deviations, we have

(π −α)(π −α)= (π −α)2 ≶ 2500 = (−50 + 100)(−50 + 100) (7.13)

If π − α > 50, (p, p) risk-dominates (a,a), and conversely. The same conclusion emerges
if one takes the risk factors, corresponding to probabilities q∗ and (1 − q∗), respectively – as
we already know from (7.12).14

Further reading

More on wargames, at different levels, can be found in Brams (1975), Morrow (1992) and
Gardner (1995). The game-theoretic reconstruction of the battle of the Bismarck Sea is in
both Luce and Raiffa (1957) and Brams (1975). A formal illustration of wars of attrition and
all-pay auctions can be found in Krishna and Morgan (1997). For further views on the MAD
game, see Powell (1987), Gardner (1995) and Haas (2001). On arms races and arms control,
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see Brito and Intriligator (1981, 1994), Lichbach (1990) and Kydd (2000). A detailed analy-
sis of the Euromissiles crisis is given in Smith (1998) and Gaddis (2006), inter alia. On the
rational use of strategic deterrence, see Lebow and Gross Stein (1989), Powell (1989b, 1990,
2003), Nalebuff (1991), Kilgour and Zagare (1991), Wagner (1991) and Berejikian (2002).
The possibility that feeding arms races triggers war has long been debated; see, for instance,
Brito and Intriligator (1984, 1996). A fascinating overview of the literature on arms races
is presented in Brito and Intriligator (2007). Other very interesting items to read in several
related directions are Morrow (1986, 1992), Powell (1989a, 1993) and Tannenwald (1999).
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8 Trade, security and hegemony

Commerce with all nations,
alliance with none,
should be our motto.

Thomas Jefferson

The topics treated in this chapter are strongly connected with the contents of Chapter 7.
In fact, what follows also belongs to the field of international relations. Broadly speaking,
one might see it as the complement to the wargames we have just reviewed. This is surely
true for:

• the policy discussion concerning openness or international trade, which has generated a
lively stream of research in the field of international political economy; and

• the debate about the alternative between guns and butter, investigating the strategy of a
country choosing to invest scarce resources either in security or in some other activities
enhancing economic welfare but possibly hindering security itself.

Within the theory of international relations, world politics is commonly viewed as
anarchic, entailing that the emergence of any form of cooperation must be compatible
with the principle of sovereignty (see, e.g., Keohane, 1986, p. 1). This, in turn, is compatible
with the principle of reciprocity, which lies at the basis of international trade agreements,
such as the General Agreement on Tariffs and Trade (GATT), and its follow-ups. This sim-
ple consideration helps in understanding the links that exist between openness (which may
look like a purely economic issue, but is not so), arms races or anything related to security,
and the emergence and persistence of hegemony in the international arena. The remainder of
this chapter illustrates a few games dealing with this set of issues.

8.1 International cooperation and free trade
I took the Canal Zone
and let Congress debate;
and while the debate goes on,
the canal does also.

Theodore Roosevelt

International economics and international political economy share a common interest for a
relevant issue, i.e., the choice between protectionism (or autarchy, or the strategic use of
tariffs and quotas) on one side, and free trade on the other. However, their respective views
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Matrix 8.1 Protectionism versus free trade

2
P F

1 P ω1(P, P);ω2(P, P) ω1(P, F);ω2(F, P)
F ω1(F, P);ω2(P, F) ω1(F, F);ω2(F, F)

Matrix 8.2 Protectionism as the outcome
of a prisoners’ dilemma

2
P F

1 P 3;3 12;1
F 1;12 8;8

on this issue are quite different, as can be easily ascertained on the basis of the following
2 × 2 games.

Consider a two-country world, each choosing between protectionism (P) and free trade
(F) in a non-cooperative game under imperfect, symmetric and complete information (see
Matrix 8.1). As usual, in every payoff ωi (·, ·) appearing in the matrix, the first letter indicates
the strategy of player i, while the second indicates the strategy of player j, i, j = 1,2, i 	= j.

If ωi (P, P) > ωi (F, P), ωi (P, F) > ωi (F, F) and ωi (P, P) < ωi (F, F), then the game
is a prisoners’ dilemma, with the free-trade outcome being Pareto-efficient – yet protection-
ism is a dominant strategy. Replacing letters with appropriate numbers, we may rewrite the
matrix as shown in Matrix 8.2.

Here, the free-riding problem affecting every prisoners’ dilemma takes the form of an
incentive for each country to keep the gates closed and wait for the other to open to trade
unilaterally. Obviously, since this holds for both, the unique equilibrium (in strictly dominant
strategies) is (P, P), which is Pareto-inefficient as compared to (F, F).

Yet, this is not necessarily the situation that we may expect to arise systematically. Indeed,
the so-called new trade theory claims exactly the opposite. That is, free trade should arise as
a unique and Pareto-efficient equilibrium in strictly dominant strategies (see Helpman and
Krugman, 1985; Krugman, 1990; inter alia). The explanation of the economic view of inter-
national trade and its beneficial effects is based on the idea that consumers are characterized
by a love for variety, that is, their utility or satisfaction from consumption increases with the
number of varieties of each consumption good they can access. Accordingly, the opening
of trade (i) fosters price competition among firms on the world market, and (ii) expands the
choice set for all consumers. Both factors operate in the direction of a welfare increase.

What changes as compared to the previous case is the list of inequalities, ωi (P, P) <

ωi (F, P) and ωi (P, F)<ωi (F, F). Hence, the game now looks like in Matrix 8.3.

Matrix 8.3 Free trade as a Pareto-efficient
equilibrium

2
P F

1 P 3;3 4;5
F 5;4 8;8



March 1, 2011 13:27 Pinched Crown A Page-115 GTSS_Chapters

Trade, security and hegemony 115

The two basic factors behind this different approach to free trade are (i) the preference
for variety, which is assumed to dwell in the representative consumer’s mind, as long as
countries are sufficiently symmetric (i.e., similar in terms of income and productivity, for
instance), and (ii) the assumption of monopolistic competition (largely equivalent to per-
fect competition except for the fact that firms supply differentiated products).1 On the basis
of these assumptions, unilateral opening to trade leads in any case to an increase in home
consumers’ surplus – hence the policy-maker of each country has a strict incentive to open.

Clearly, whether the first or the second perspective is more attractive depends on the
ideological background of the scholar examining the matter, in combination with empiri-
cal observations. Both approaches have their own unquestionable merits, as well as some
drawbacks.

Be that as it may, it is possible to show that, even if the underlying game is a prisoners’
dilemma, one can reasonably hope to observe free trade in equilibrium. This is a typical task
for the theory of repeated games that we met in Chapter 5. Provided the game is repeated
over an infinite horizon, the so-called folk theorem (in any of its manifold formulations)
ensures that players may play a subgame perfect equilibrium Pareto-dominating that of the
constituent game.

Here we shall adopt the rules of the perfect folk theorem (Friedman, 1971), under the
assumption that Matrix 8.1 be a prisoners’ dilemma. Let me recall briefly the structure of
the supergame on which Friedman’s result is based. Time is t = 0,1,2,3, . . . ,∞, and both
countries discount future gains using the same discount factor δ ∈ [0,1]. Remember that, if
δ = 0, countries are completely myopic – accordingly, they are altogether unaware that the
game is a repeated one; conversely, the higher is δ, the higher is the value attached to future
payoffs. That is, players become progressively more forward-looking as δ increases.

The rules of the repeated game are based on the following grim trigger strategies:

1 At t = 0, play F.

2 At any t > 0, play F if both have played F at t − 1. Otherwise, play P and keep on like
that forever.

Strategy F is part of a subgame perfect equilibrium provided that

∞∑
t=0

ωi (F, F)δt ≥ωi (P, F)+
∞∑

t=1

ωi (P, P)δt (8.1)

In (8.1), the expression on the left-hand side is the discounted flow of payoffs (assessed at
t = 0) generated by sticking to free trade forever. The expression on the right-hand side is
the discounted flow of payoffs generated by the unilateral deviation towards protectionism,
followed by the Nash punishment. Since

∞∑
t=0

δt = 1

1 − δ
⇔

∞∑
t=1

δt =
∞∑

t=0

δt − 1 = 1

1 − δ
− 1 = δ

1 − δ
(8.2)
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Matrix 8.4 Here, a ‘global power’ has a
taste for free trade . . .

France
P F

GB P 1;3 2;1
F 3;4 4;2

condition (8.1) can be reformulated as

ωi (F, F)

1 − δ
≥ ωi (P, F)+ δ

1 − δ
ωi (P, P) (8.3)

yielding

δ ≥ ωi (P, F)−ωi (F, F)

ωi (P, F)−ωi (P, P)
= δ∗ (8.4)

which represents the stability condition that both countries must satisfy so that the repeated
game may indeed yield (F, F) as the subgame perfect equilibrium. Otherwise, if δ ∈ [0, δ∗),
then the equilibrium outcome is (P, P) at any t = 0,1,2,3, . . . ,∞. In the latter case, the
countries are unable to escape from the prisoners’ dilemma.

Now take the numerical payoffs appearing in Matrix 8.2 and plug them into (8.4). What
you get is

δ ≥ δ∗ = 12 − 8

12 − 3
= 4

9
(8.5)

establishing that, in this example, free trade is sustainable as the long-run equilibrium for all
δ ≥ 0.4̄ (the bar indicates that this is a periodical number, whereby 0.4̄ = 0.44444 . . .).

This discussion can be summarized by stating the following remark.

REMARK 8.1 If countries are sufficiently patient (i.e., if they attach a sufficiently high
weight to future payoffs), then repeating the constituent game over an infinite horizon allows
them to sustain free trade as an equilibrium outcome forever.

What if countries are not symmetric? Matrix 8.4 summarizes an asymmetric game that
took place in the nineteenth century between Great Britain and France. Great Britain, after
the outcomes of the Seven Years’ War and the Napoleonic wars – and ultimately thanks to the
skills and bravery of the Royal Navy – was enjoying a hegemonic position over the globe.2

That was probably the earliest example ever of a ‘global power’.
This game, described by Keohane (1986, p. 15) and Gowa (1989, p. 1251), has a unique

equilibrium, in strictly dominant strategies: (F, P), with Great Britain opening to trade and
France keeping a protectionist stance.

This example helps to clarify that incentives towards trade may differ significantly across
countries. In slightly different terms, we may pass on to examine a game between a ‘large’
or hegemonic country (H ), and a ‘small’ or non-hegemonic one (NH). Matrix 8.5, describing
this situation, is taken from Conybeare (1984).

In this case, the small country has a strictly dominant strategy, F, while the big country
hasn’t any. However, by iterating the dominance criterion, once NH has dropped the first
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Matrix 8.5 . . . but the reverse may also
apply

NH
P F

H P 1;1 4;2
F 2;3 3;4

column, what remains of the first row identifies in P the dominant strategy for H . Therefore,
(P, F) emerges as the unique Nash equilibrium in dominant strategies. This equilibrium
is also selected by backward induction, provided that H is the first mover in the perfect
information game. Note, however, that, if the small country plays first, the subgame perfect
information is (F, P) – which isn’t even a Nash equilibrium if we assess the above matrix
under imperfect information.3

8.2 Guns versus butter and the trade-off between
openness and security

War is a game that is played with a smile.
If you can’t smile, grin.
If you can’t grin, keep out of the way till you can.

Sir Winston Churchill

In its starkest form, the realistic approach to international relations views them as an anarchic
system where nations allocate scarce resources to alternative objectives, such as security on
one side and economic growth on the other. This is the essence of the guns versus butter
trade-off that we will investigate in this section.

Possibly the easiest way to sketch the problem of choosing between guns and butter is the
game represented in Matrix 8.6. Here, two identical countries, 1 and 2, choose between two
mutually exclusive strategies, G (guns) and B (butter). Let π be the payoff each country gets
if this game were not played at all. If both go for the guns, the countries’ arsenals balance off
reciprocally, so that the resulting individual payoff is π + g − g = π. If both choose butter,
the individual payoff is increased by the amount b. In the asymmetric outcomes, the country
that plays B suffers from the fact that the other is building up weapons.

The equilibrium of the game depends upon the relative size of b and g, i.e., the countries’
preferences between guns and butter:

• If butter matters more than guns (b > g), then π + b − g > π and π + b > π + g > π .
Consequently, the game is solvable by strict dominance, with (B, B) emerging as the
unique and Pareto-efficient equilibrium.

• If, instead, guns matter more than butter (g > b), then π + b − g < π and
π + g >π + b >π . The game is again solvable in dominant strategies, but this time the

Matrix 8.6 Guns versus butter

2
G B

1 G π;π π + g;π + b − g
B π + b − g;π + g π + b;π + b
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Matrix 8.7 Guns versus butter with asymmetric
preferences

2
G B

1 G π + g1 − g2;π + g2 − g1 π + g1;π + b2 − g1

B π + b1 − g2;π + g2 π + b1;π + b2

unique equilibrium is (G, G), which is Pareto-dominated by (B, B). Therefore, in this
case the game is a prisoners’ dilemma.

So far, I have taken the two countries to be fully symmetric, but this is not necessarily
realistic, as history and casual observation alike immediately suggest: there are countries
that attach a higher weight to security (or guns), while others do the opposite. A slightly
more general version of the game, described by Matrix 8.7, captures this aspect and allows
one to grasp the possible consequences of this particular asymmetry in tastes.

Assume country 1 prefers butter to guns (b1 > g1), while country 2 prefers guns to butter
(g2 > b2). This implies the following inequalities:

π + b1 − g2 > π + g1 − g2, π + b1 >π + g1 (8.6)

π + g2 − g1 > π + b2 − g1, π + g2 >π + b2 (8.7)

Accordingly, B is dominant for country 1 while G is dominant for country 2. The resulting
equilibrium, (B, G), is also unique.

A more detailed approach to the same issue can be framed in the following terms. His-
torical facts suggest that trade restrictions (tariffs, quotas, embargoes and other sanctions)
have often been adopted as part of a security policy. The restrictions imposed by the USA on
Japan relating to oil and raw materials on the eve of the war in the Pacific are just one exam-
ple. The following game, loosely based on Skaperdas and Syropoulos (2001), illustrates this
problem.

Players are countries 1 and 2. Each of them may open to trade (strategy t) or build up
armaments (strategy a) to exert some degree of control over a strategic natural resource r
(oil, uranium, etc.) located in a third country. Let the cost of manufacturing weapons be k.
The layout of the game is shown in Matrix 8.8.

The two countries are fully symmetric. Under bilateral trade (outcome (t, t)), each coun-
try imports and exports the same quantity of goods x , so that the payoff in this regime is
the level of consumption associated with domestic production, c, plus the balance between
imports and exports, which is nil: c + x − x = c. The other symmetric outcome is that where
frontiers are closed and countries invest in an arms race to control the natural resource. In
such a case, assume for simplicity that each country ends up acquiring 50 per cent of such
resource. The associated payoff is the sum of the level of autarchic consumption plus half

Matrix 8.8

2
t a

1 t c; c c − x − r; c + x + r − k

a c + x + r − k; c − x − r c + r/2 − k; c + r/2 − k
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the natural resource endowment, minus the investment cost: c + r/2 − k. The asymmetric
outcome yields complete control of the resource to one country, while the other is put at a
disadvantage for the very same reason. This adds up to the asymmetry in trade flows, as the
aggressive country also exports to the non-aggressive one.

In order to assess the countries’ incentives as well as the equilibrium outcome(s), we
have to make some reasonable guess about the relative sizes of the parameters. Intuitively, it
must be that r > k, i.e., the costly acquisition of the full control over the resource must be
convenient. However, r/2 can be either higher or lower than k. With this in mind, observe
that

c + x + r − k > c (8.8)

always, while

c + r

2
− k > c − x − r (8.9)

is equivalent to

3r

2
− k >−x (8.10)

which is also true because we are assuming r > k. As a result, trade is a dominated strat-
egy and will not be adopted. The unique equilibrium, at the intersection of strictly dominant
strategies, is (a,a). Whether this identifies a prisoners’ dilemma depends on the sign of
r/2 − k. If this is a positive number, then the equilibrium is Pareto-efficient; otherwise the
game is indeed a prisoners’ dilemma. It is worth stressing that the structure of countries’ pref-
erences may prevent them from considering the game as a prisoners’ dilemma, and therefore
they may view the perspective of going for guns as not only rational but also efficient or even
desirable.

Accordingly, the bottom line of the foregoing discussion can be expressed as follows.

REMARK 8.2 The trade-off between guns and butter can be expected to drive countries in
the direction of guns. Moreover, they may not see it as the outcome of a prisoners’ dilemma.

8.3 The persistence of unipolarism
Concentrated power has always
been the enemy of liberty.

Ronald Reagan

This section takes a look at the problem of hegemony as a unilateral phenomenon.4 After
the end of the Cold War, the USA remained the only global power. This situation has been
labelled as unipolarism. However, according to the realist theory, unipolarism is not bound
to be a long-run equilibrium.5 Consequently, the current status quo seems at odds with the
dominant view of the theory of the balance of power, establishing that sooner or later a
counterbalancing power, perhaps taking the form of a coalition of several states, should arise.
This position is largely based on history, and therefore sounds like a robust one, but is there
no space at all for exceptions?
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Indeed, in contrast with this position, Ikenberry (2002)6 proposes an eclectic alternative
view of the issue at stake, whereby the hegemony of the global power is sustained by an
international governance system granting every potential competitor a number of appealing
benefits, e.g., bilateral trade agreements, military support, technology transfers, etc.

This mixture of liberal and realist attitudes has two major implications. On the one hand,
it limits the power effectively enjoyed by the USA as the leader of the international order; on
the other, it clearly tends towards a reduction of the incentives to look for alternatives (e.g., a
counterbalancing coalition) by means of a growing network of international institutions.
This amounts to saying that the system introduced by the USA after the end of World War II
contains a trade-off between the amount of effective hegemony exerted by the global power
and the degree of confidence that the status quo might indeed persist.7 That is, the insurance
against defections is costly. This fact has prompted several doubts on the robustness of the
existing system (see, e.g., Kupchan, 2002), as the sustainability of such costs on the part of
the USA (and their taxpayers) is not completely out of the question.

The following is a three-country world8 where the players are a global power and two
satellites. To keep things as essential as possible, the strategy space is binary, both for the
global power and for each of the satellites. The hegemonic country has to choose whether or
not to subsidize the satellites, so as to avoid the formation of a counterbalancing coalition,
while the satellites have to decide whether to ally or not, being aware that constructing a
coalition is a costly activity.

8.3.1 The model

The players are one global power (denoted by G) and two satellites, s1 and s2. Assume that:
(i) G may pay each of the satellites a given subsidy σ > 0, lest they get together to form a
coalition aimed at diminishing G’s hegemonic position; and (ii) each satellite may, if it does
not receive the subsidy, invest an amount of resources k > 0 to build up the coalition. It is
relevant to stress that the alliance is taken not to be a pure public good, in that an amount
equal to 2k is needed for its construction. To clarify this aspect, I introduce the following
assumption.

ASSUMPTION The overall cost of building up a coalition is 2k. The amount of resources
available to each satellite is k.

This assumption prevents each small country si individually undertaking the venture of
building up a countervailing power to counterbalance that of G. In turn, this might open a
discussion as to whether G could save upon the total amount of subsidies by granting only a
single σ to one of the satellites, obtaining in return that the coalition does not arise. Here I
will not consider this possibility, the reason being twofold. First, the distribution of subsidies
to both satellites is in accordance with facts, as observing the behaviour of the USA towards,
say, Russia and China suffices to confirm. Second, the model is defined in such a way that
it includes only the relevant players, where relevant means that they are the only potential
competitors that G must take into account. The rest of the world (say, Japan, the EU, etc.),
which is known not to represent a threat to the global power in this respect, is not modelled.

I am now in a position to introduce the basic elements of the game. The global power faces
four alternative perspectives:

1 If it delivers the subsidies and the satellites do not build up a coalition,9 G’s utility is

UG(σ,NC)= cG − 2σ + 2βσ + P (8.11)
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where:

• NC indicates that there is no coalition;
• cG is G’s domestic consumption level;
• σ is the size of the subsidy, and therefore 2σ is the total cost borne by G;
• 2βσ measures the benefit to the global power, generated by the subsidies to the

satellites, the marginal benefit being measured by parameter β ∈ (0,1); and
• P measures the power level enjoyed by G if no coalition builds up, and UG(σ )> 0 for

all σ ∈ (0, (cG + P)/[2(1 −β)]).

The relevance of β, to which I will come back later in the analysis of the game, can be
preliminarily illustrated on the basis of two alternative perspectives. Keeping the status
quo unchanged through the distribution of subsidies implies a cost and a return to G.

The first is obviously represented by the total amount of subsidies, i.e., the quantity −2σ ;
the second is a positive component measuring the valuation attached by G to the fact
that satellites do not ally against it, 2βσ . Hence, clearly we must have β < 1 for the
subsidization manoeuvre to entail a net cost, as common sense would suggest. As is
going to become apparent in the remainder of the book, the size of β will play a crucial
role in shaping the equilibrium outcome.

2 If, instead, the global power does not deliver any subsidies to the satellite countries, and
the latter form a coalition C , then G’s payoff is

UG(0,C)= cG + P −βC (8.12)

where C ∈ (0, P) measures the level of power held by the alliance between satellites s1

and s2. Note that the coalition reduces G’s power by an extent measured by parameter β.

This amounts to saying that G evaluates in the same way the marginal disutility of any
power decrease as well as that associated to paying subsidies.10

3 The third situation is that where G pays the subsidies but the satellites decide to invest in
a counterbalancing coalition, yielding thus

UG(σ,C)= cG − 2σ + P −βC (8.13)

4 The last possible case is that where the global power does not distribute the subsidies and,
this notwithstanding, the satellites do not form an alliance. In this situation, G’s utility is

UG(0, NC)= cG + P (8.14)

Now focus upon the satellites. Again, four cases can be envisaged:

1′ If they accept the subsidies and do not create a coalition, each satellite attains the
following utility:

ui (σ, NC)= ci + σ (8.15)

where ci defines the domestic consumption level in satellite i .
2′ If, instead, having received no subsidy, the satellites build a coalition, their individual

utility becomes

ui (0,C)= ci − k + C (8.16)
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Matrix 8.9 Will unipolarism persist?

si

NC C

G σ cG − 2σ(1 − β)+ P; ci + σ cG − 2σ + P − βC; ci + σ + C − k
a cG + P; ci cG + P − βC; ci + C − k

In this regard, it is worth stressing that country i pays an individual fee k associated
with the investment required to construct the alliance, but then enjoys the full benefit C
yielded by the alliance itself. One has to assume that the net payoff generated by the
coalition is positive, C ≥ 2k. This suffices to ensure that ui (0,C)> 0.

3′ In this case, each of the satellites is subsidized but still they decide to form a coalition,
whereby the individual payoff accruing to each of them is

ui (σ,C)= ci + σ + C − k (8.17)

4′ Finally, there remains the case where G does not distribute any subsidy and the satellites
do not invest to build an alliance:

ui (0,NC)= ci (8.18)

The game can be represented in strategic form as in Matrix 8.9, where G is the row player.
Given the additive separability of the payoff functions, I will only represent the payoffs of
one of the two satellites as the column player, without loss of generality and without affecting
the solution.11

Assume that the game is one of imperfect, complete and symmetric information. In order
to characterize the equilibrium solution, one has to examine the incentives, respectively, for
G to pay the subsidies so as to try to avoid the arising of the coalition, and for the satellites
to accept the subsidies and, possibly, not to form the coalition. Observe that

UG(σ,NC)< UG(0,NC) ⇔ β ∈ (0,1)

UG(σ,C)< UG(0,C) ⇔ σ > 0 (8.19)

that is, (i) if the satellites do not form a coalition, then it is convenient for the global power not
to pay the subsidies for all the admissible values of β, while (ii) in presence of the coalition,
it is optimal for G not to distribute any subsidy for all admissible σ > 0. Therefore, the
following remark can be made.

REMARK 8.3 The global power has a strictly dominant strategy, which consists in paying
no subsidies to the satellites, for all admissible levels of parameters β and σ .

As for the satellite country i, the following hold:

ui (σ,C)> ui (σ,NC) ⇔ C > k

ui (0,C)> ui (0,NC) ⇔ C > k (8.20)

which entails the following remark.
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REMARK 8.4 Forming a coalition is a strictly dominant strategy for the satellites.

On the basis of Remarks 8.3 and 8.4, without further proof, I may state the following
result.

PROPOSITION 8.1 The game has a unique Nash equilibrium identified by the strategy
pair (0,C). Such a Nash equilibrium is in strictly dominant strategies.

The next step consists in verifying whether the present game can be a prisoners’ dilemma.
For this to hold, the additional condition that has to be satisfied is that the equilibrium be
Pareto-inefficient, which depends on the relative magnitude of the payoffs appearing along
the main diagonal of Matrix 8.9.

If the following inequalities are simultaneously satisfied, then the game is indeed a
prisoners’ dilemma:

UG(σ,NC)> UG(0,C) ⇔ cG − 2σ(1 −β) + P > cG + P −βC (8.21)

ui (σ,NC)> ui (0,C) ⇔ ci + σ > ci − k + C (8.22)

Simplifying condition (8.21), one obtains

σ <
βC

2(1 −β)
(8.23)

while condition (8.22) yields

σ > C − k (8.24)

An intuitive interpretation can be given for both. On the one hand, (8.23) shows that G will
find it profitable to deliver the subsidy if it is low enough as compared to the ratio between
the damage generated by the coalition, given by βC , and the net marginal benefit of the
subsidies, measured by 2(1 − β). On the other hand, condition (8.24) simply states that a
satellite will be willing to accept the subsidy and abandon the perspective of investing to
build up the coalition if the subsidy is higher than the net gain associated with building up
the coalition.

Note that the compatibility between (8.23) and (8.24) requires that

βC

2(1 −β)
> C − k (8.25)

which is equivalent to the following condition:

2k(1 −β)> C(2 − 3β) (8.26)

Whether inequality (8.26) is met will of course depend on the relative size of the three
parameters involved. However, there clearly exist admissible regions of parameter space
where this condition holds. The validity of this assertion is quickly shown, as follows. By
assumption, we know that 1 − β > 0. Therefore, the left-hand side of (8.26) is positive.
The right-hand side may take either sign, depending on the value of β: it is positive for all
β ∈ (0,2/3), while it is negative for all β ∈ (2/3,1). Therefore, taking any values of β in
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(2/3,1) is sufficient (but not necessary) to validate (8.26).12 To complete the argument, it
suffices to observe that, if (8.26) holds, G may always choose an appropriate value of σ such
that the resulting game is a prisoners’ dilemma. Hence, I have proved the following result.

PROPOSITION 8.2 Examine the size of the subsidy. Two mutually exclusive situations may
arise:

• Suppose that 2k(1 − β) > max{0,C(2 − 3β)}. Then C − k > βC/[2(1 − β)], and for
all σ ∈ (C − k, βC/[2(1 − β)]

)
the Nash equilibrium in dominant strategies identi-

fied by (0,C) is the outcome of a prisoners’ dilemma. If either σ > βC/[2(1 − β)] or
σ ∈ (0,C − k), the outcomes (σ,NC) and (0,C) cannot be Pareto-ranked.

• Suppose instead that C(2 − 3β) > 2k(1 − β) > 0. Then C − k < βC/[2(1 − β)], and for
all σ ∈ (βC/[2(1 −β)],C − k

)
the Nash equilibrium in dominant strategies identified by

(0,C) is Pareto-efficient. If either σ > C − k or σ ∈ (0, βC/[2(1 − β)]
)
, the outcomes

(σ,NC) and (0,C) cannot be Pareto-ranked.

The second part of the above proposition describes the case where the obvious solution is
one where satellites do ally, the global power does not pay any subsidies to try to keep the
status quo unaltered, and ultimately there are no regrets on either side. More interesting is the
alternative perspective where we observe a prisoners’ dilemma game, because in such a case,
as is well known, a repeated game framework may offer a way out of the Pareto-inefficient
Nash equilibrium generated by the one-shot game.13 This is done in the next section.

8.3.2 The supergame

To model the behaviour of players in the supergame, I will resort here to the so-called perfect
folk theorem based upon grim trigger strategies (Friedman, 1971).14

Assume that

C

2k
>

β − 1

3β − 2
and σ ∈

(
β − 1

3β − 2
,

C

2k

)
so that the constituent game described by Matrix 8.9 is indeed a prisoners’ dilemma. It is
important to stress that G may intentionally choose a level of σ in this interval, in order to
make the stage game a prisoners’ dilemma. The relevance of this aspect lies in the fact that,
by doing so, the global power may deliberately induce the development of a supergame that
may have an equilibrium outcome that differs completely from the one characterizing the
one-shot game. It is also worth emphasizing that only G is able to manipulate the strategic
incentives underlying the game, while the satellites cannot do so. To some extent, this says
that one of the prerogatives of the global power is precisely to affect at will the nature of the
game, if this appears to be profitable for the global power.

Let the stage game repeat over discrete time t = 0,1,2,3, . . . ,∞.15 Players share the
same discount factor δ ∈ [0,1]. According to the rules of the perfect folk theorem, it is
established that players stick to the Pareto-efficient path as long as no deviation is detected.
As soon as this happens, then they revert to the dominant Nash equilibrium strategy forever.
Therefore, the strategy pair (σ,NC) is a subgame perfect equilibrium of the supergame if
and only if, for both players, the discounted flow of payoffs associated with the collusive
outcome (σ,NC) is at least as large as the discounted flow of payoffs associated with the
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alternative perspective where either player defects once and then both revert to the one-shot
non-cooperative equilibrium forever. That is, the outcome (σ,NC) is sustainable if and only
if the following inequalities are both satisfied:

UG(σ,NC)

1 − δ
≥ UG(0,NC)+ δUG(0,C)

1 − δ
(8.27)

ui (σ,NC)

1 − δ
≥ ui (σ,C)+ δui (0,C)

1 − δ
(8.28)

That is, unlike the previous supergames we have seen, the asymmetry across players char-
acterizing the present game complicates the analysis a little bit, as the global power and the
satellites have different views about the long-run perspective they are collectively facing.

From (8.27), one obtains

δ ≥ 2(1 −β)σ

βC
≡ δG (8.29)

while (8.28) yields

δ ≥ C − k

σ
≡ δs (8.30)

with δG, δs ∈ (0,1) on the basis of conditions (8.23) and (8.24). A straightforward examina-
tion of δG and δs reveals what is stated in the following remark.

REMARK 8.5 The discount factor δG increases monotonically in σ, while the opposite
holds for the discount factor δs .

To prove this result, it suffices to observe that σ appears in the numerator of δG with pos-
itive sign (as β < 1), whereas it appears in the denominator of δs (again with positive sign).
The intuitive explanation of these facts is that, as σ becomes larger, it becomes increasingly
costly for G to pay the subsidies, while it becomes more attractive to each of the satellites to
accept the subsidies and to renounce building the coalition.

Moreover, we find that

δG − δs ∝ 2(1 −β)σ 2 −β(C − k)C (8.31)

which is positive if and only if

σ >

√
β(C − k)C

1(1 −β)
(8.32)

Comparing the expression on the right-hand side of (8.32) with the lower and upper bounds
of the interval for σ wherein we observe a prisoners’ dilemma, we find that√

β(C − k)C

1(1 −β)
∈
(

C − k,
βC

2(1 −β)

)
(8.33)

provided that (8.26) is satisfied. This allows me to formulate the main result of this chapter.
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THEOREM 8.1 Take 2k(1 − β) > max{0,C(2 − 3β)}, so that the game as defined by
Matrix 8.9 is a prisoners’ dilemma. Then, consider the supergame generated by the infinite
repetition of such a constituent game. Using the perfect folk theorem, the resulting critical
thresholds of the discount factors are

1 > δG >δs > 0 for all σ ∈
(√

β(C − k)C

1(1 −β)
,

βC

2(1 −β)

)

1 > δs >δG > 0 for all σ ∈
(

C − k,

√
β(C − k)C

1(1 −β)

)

If δ ≥max{δG, δs}, then the strategy pair (σ,NC) is sustainable at the subgame perfect equi-
librium of the repeated game. For all δ ∈ [0,max{δG , δs}), the subgame perfect equilibrium
is (0,C).

It is worth observing that, for comparatively low levels of the subsidy, the most demand-
ing threshold is associated with the time preferences of the global power; conversely, for
sufficiently high values of σ, the decisive threshold is δs . A possible interpretation of this
outcome could be that, if σ is large enough, then the prospect of cheating becomes very
appealing for each of the satellites. By doing so, each of them receives, if only for one
period, a very rewarding subsidy without bearing the cost of an alliance.

As a last remark, observe that the repeated game still allows for the Nash equilibrium of the
constituent game to repeat forever, that is, the above theorem illustrates, as is always the case
with repeated games, the existence of multiple equilibria, one of which is that yielded by the
prisoners’ dilemma. However, the point made by the present analysis is that the persistence
of a status quo characterized by unipolarism cannot be rationally ruled out.

Further reading

For more on the issues tackled in this chapter, see Brams (1975), Waltz (1979), Gilpin (1981),
Keohane (1989) and Ikenberry (2001, 2002). On trade theory and policy, see Helpman and
Krugman (1989), Krugman (1991) and Grossman (1992). On the interplay between security
and openness (or trade), see Dorussen (1999). On the trade-off between guns and butter,
see Polachek (1980), Chan and Mintz (1992), Powell (1993), Gowa (1994), Heo (1998) and
Carrubba and Singh (2004). Concerning the theory of the balance of power, unipolarism
and hegemony, see Walt (1987), Mastanduno (1997), Vasquez and Elman (2000), Ikenberry
(2004) and Cox (2005).

8.4 Appendix: the game between satellites
Here we may examine the strategic interaction between satellites, which have to choose
whether or not to undertake the construction of the coalition. To do so, let’s take a fully non-
cooperative perspective. Two alternative games can be envisaged, depending on whether or
not the global power subsidizes the satellites. Matrix 8.10 describes the first case.

Clearly, the game is symmetric along the main diagonal and there is no dominant
strategy, with

ci + σ > ci + σ − k
ci + σ + C − k > ci + σ

(8.34)



March 1, 2011 13:27 Pinched Crown A Page-127 GTSS_Chapters

Trade, security and hegemony 127

Matrix 8.10 Satellites receive subsidies

s2

0 k

s1 0 c1 + σ ; c2 + σ c1 + σ ; c2 + σ − k
k c1 + σ − k; c2 + σ c1 + σ + C − k; c2 + σ + C − k

Therefore, matrix 1 describes a coordination game with two symmetric equilibria, (0,0)

and (k, k), which can be Pareto-ranked: (k, k) � (0,0), as both countries strictly prefer to
ally. However, if the game is played under imperfect information, i.e., simultaneously, then
there is no particular reason to believe that the satellites will select (k, k).16 Completely
different considerations can be put forward under perfect information, i.e., if the game is
played sequentially with either player at the root of the game tree. The extensive form
is shown in Figure 8.1.

It is easily checked by backward induction that the subgame perfect equilibrium is (k, k).

To see this, examine each subgame in isolation, starting from the terminal nodes. If satellite j
knows itself to be in the left singleton (because i has chosen strategy 0), then the optimal
choice is to play 0. The resulting payoffs are ci + σ for both.

Otherwise, corresponding to the right singleton, j’s best reply to k consists in choosing k,

the associated payoffs being ci + σ + C − k. Hence, i is aware that choosing 0 it will attain
c1 + σ, while choosing k it will attain c1 + σ + C − k > ci + σ. As a result, the optimal
choice for the player located at the root of the game tree is to invest k, inducing an analogous
behaviour by the country located at the intermediate nodes.

The alternative case where G does not pay any subsidies can be quickly dealt with, as the
game is qualitatively equivalent except for the absence of σ in all of the payoffs involved, as
clarified by Matrix 8.11.

Therefore, under imperfect information, we again have two Nash equilibria in undomi-
nated strategies, (0,0) and (k, k), the latter being selected as the unique subgame perfect
equilibrium by backward induction, if the game is solved under perfect information.

si

s j

0 k

0 k 0 k

c1 + σ

c2 + σ

c1 + σ

c2 + σ − k

c1 + σ + C− k

c2 + σ + C− k

c1 + σ − k

c2 + σ

Figure 8.1 The extensive form of Matrix 8.10

Matrix 8.11 Satellites do not receive subsidies

s2

0 k

s1 0 c1; c2 c1; c2 − k
k c1 − k; c2 c1 + C − k; c2 + C − k
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9 The role of information

A good marriage would be between
a blind wife and a deaf husband.

Honore de Balzac

I don’t necessarily agree with Balzac, but his words are in line with the topics treated in
this chapter. So far, we have been dealing with games where information was symmetric
and complete, and with either perfect or imperfect information. It is now time to go into the
realm of asymmetric and/or incomplete information games.

First of all, let me recall the notions of information symmetry and completeness spelled out
in Chapter 2. Information is complete provided that each player knows the entire structure of
the game, i.e., the identities of all players, the admissible strategies for each of them, and their
respective payoffs corresponding to every admissible outcome. Information is symmetric
provided that exactly the same amount of information is available to all players. If any of
these stipulations does not apply, then the resulting game is affected by either incomplete or
asymmetric information, or both.

It goes without saying that the assumptions of symmetry and completeness are, in many
situations, much less than realistic, if at all so. Therefore, being able to cope with informa-
tional problems has been a primary goal in the agenda of game theorists for decades, and
the related literature is still flourishing. The solution of such games requires new notions
about the way players think of themselves and rivals before and during the game, and ulti-
mately asks for new equilibrium concepts elaborating the limited information players may
rely upon ex ante, as well as the additional bits of information they avidly extract during the
development of the game.

As we shall see, the presence of uninformed players may create a temptation for informed
ones to manipulate information strategically, by sending signals that may be either true or
false, depending on the senders’ incentives. This aspect is also intertwined with (and, to a
significant extent, conditioned by) the endogenous construction of reputation by informed
players, on which uninformed ones can rely, and that contributes to shape the outcome of
a game.

I will start out by showing you the basic elements of asymmetric information. Then, I will
pass on to games taking place under incomplete information. Finally, we’ll have a look at a
solution concept that may be used also when asymmetric or incomplete information is not an
issue: forward induction. An aspect that so largely contributes to make forward induction as
interesting as it is for game theorists is its relation (or contrast) with the backward induction
method you are well acquainted with.
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9.1 Asymmetric information
The usual approach to modelling the presence of asymmetric information in games consists
in viewing the latter as situations where agents have to stipulate agreements concerning a
certain transaction or their future behaviour. That is, the heart of the matter is a contract
regarding any objects being traded or relevant aspects of the future relationship between
these agents in the future.

Asymmetric information can take two forms, alternatively. If asymmetry precedes the
transaction (or the stipulation of the contract), we observe a problem of adverse selection;
if instead asymmetric information arises after the stipulation of the contract, we are in a
condition of moral hazard.

For the sake of simplicity, let’s confine our attention to two-player games. Under asym-
metric information, the agent endowed with a larger amount of information is called the
agent, while the other is called the principal. Their interplay defines what is traditionally
labelled as an agency relationship.

According to Stiglitz (1985), adverse selection problems regard the features of objects
being traded (as, for example, the built-in quality of consumption goods) that are supposed to
be known ex ante to sellers but not necessarily to purchasers, while the phenomenon of moral
hazard is connected with the behaviour of agents (as, for example, workers shirking once
hired). There are, of course, hybrid cases. One obvious example is the insurance markets,
where the insurance company (the principal) cannot tell a priori whether any specific client
(the agent) buying a theft insurance for his/her car is a risky individual or not: he/she may
usually leave the car carelessly unlocked in a parking lot, thus increasing the probability
of theft. This situation envisages the presence of an ex ante adverse selection issue about
the type of the client, as well as an ex post moral hazard issue once the insurance has been
activated.

Within the moral hazard area (following Arrow, 1985), we can build up an additional
taxonomy separating hidden action games from hidden information games. In the former,
the agent undertakes actions unobservable to the principal, while in the latter the agent’s
actions may be observable but the reasons underlying his/her behaviour are not.

9.1.1 Moral hazard: the agency game

The principal–agent relationship is typically associated with the internal organization of
firms, and in particular with the strategic interplay between stockholders and managers. That
is, agency is seen as inherently linked to the separation between ownership and control of
a firm. Large firms operate this separation, as shareholders (or simply owners) may not be
trained to run a firm, and therefore find it appropriate to hire someone who possesses the
required professional skills. Yet, this gives rise to a moral hazard issue, as the managers
(i) possess information that owners cannot freely access (and if they did, they might not be
able to interpret correctly), and (ii) shape their behaviour in accordance with the aforemen-
tioned information and their own objectives. The latter, unfortunately for shareholders, will
not be aligned with profit maximization – in general – because managers are not holding sig-
nificant shares of the firms’ capital stock. Accordingly, managers might desire to maximize
market shares, sales, etc., or simply shirk.

If approached from this angle, agency theory belongs to the theory of the firm and it
can be considered basically as a formal approach to the problem of opportunistic behaviour
outlined by Williamson (1975) and others. However, it is only fair to say that moral hazard
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and opportunism do affect any organization where the alignment of incentives along the
hierarchical structure cannot be expected to emerge so easily.

A relatively simple model of an agency relationship can be outlined as follows.1 Players
are a principal, p, and an agent, a. For simplicity, I will set out illustrating the hidden
action case.

The activity carried out by the agent produces a return R(e), which increases with the
agent’s effort e. The latter is unobservable by the principal, although the latter knows how
hard the agent should work to yield a certain return. This amounts to saying that the principal
knows the functional form of R(e) and therefore knows that, say, an effort ẽ is needed to
generate a return R̃. The hiring contract specifies the agent’s remuneration (or wage) w(R) as
a function of the principal’s revenue R, which is the only thing that the principal can observe.
The principal’s objective function is V (R(e) − w(R)). If this is a firm and R(e) − w(R) is
profit, this means that the principal is happier the higher is the firm’s profit. The agent wants
to maximize the objective function U (w, e), which is increasing with w and decreasing with
e: that is, the agent dislikes effort. The strategic variables are w (controlled by the principal)
and e (controlled by the agent).

The game unravels as follows:

1 The principal offers a contract specifying the wage level w to the agent.
2 The agent may or may not accept the job. He/she does so provided that the resulting utility

U (w, e) is at least as large as the so-called reservation utility �U accessible to the agent
on the market (i.e., outside this specific firm). If the agent signs the contract, he/she will
produce an effort e unobservable by the principal.

3 This will generate a return R(e) to the principal.

The resulting payoffs will be:

(a) πa = �U and πp = 0 if the agent does not accept the contract; and
(b) πa = U (w, e)≥ �U and πp = V (R(e)−w(R)) if the agent accepts the contract.

Now let’s deal with the moral hazard problem implied by the unobservability of the effort.
If the agent receives a fixed amount �w, he/she will sign the contract and then shirk. Therefore,
the principal faces a binary choice between (i) offering a salary equal to zero (a trivial case in
which the agent will never accept the job) and (ii) offering a salary that is indeed proportional
to the revenues, w(R). The solution of the principal’s problem is a forcing contract whereby
the agent’s wage satisfies the conditions

U (w(R∗), e∗)= �U for all R ≥ R∗

U (w(R), e)< �U for all R < R∗ (9.1)

That is, the principal sets a desired level of revenues R∗ and writes a contract establish-
ing that the agent will get a salary ensuring the attainment of the reservation utility �U
provided that the principal receives R∗. Otherwise, the agent is being punished, as the
remuneration associated with any revenue level R < R∗ is insufficient to reach the agent’s
reservation utility.

Let’s now introduce hidden information into the picture. In this case, revenues are deter-
mined by the agent’s effort and a new element, usually labelled as the state of the world. The
latter is a stochastic (or random) parameter ε, affecting also the agent’s behaviour, so that
e(ε,w) and R(e(ε,w), ε). In the existing literature, this aspect of the model usually involves
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the presence of a third player, nature, extracting the state of the world and showing it to one
player only. The label ‘state of the world’ captures anything that can affect the performance
of the agency we are looking at: for instance, in the case of a manufacturing firm, it can be
an oil shock or a financial crisis. Both players know the probability distribution of the state
of the world (i.e., how likely the occurrence of an oil shock tomorrow morning can be), but
the actual value of ε is observable by the agent only. This private information intervenes in
defining the intensity of the agent’s effort e and complicates the task of the principal, who
now has to write a contract specifying w under asymmetric information about e and ε at the
same time. The above forcing contract clearly doesn’t work any more: any unsatisfactory
performance R < R∗ could be imputed by the agent to an unfavourable state of the world
(or, bad luck), with the principal being altogether unable to understand whether the agent
is telling the truth or just lying. Here, the effort is non-contractible not simply because it is
unobservable but because of the hidden information about the state of the world, whereby
the principal could never prove in a court of law that the agent has been shirking.

Given the uncertainty associated with the state of the world, we have to make an appropri-
ate hypothesis concerning the attitude of both players towards risk. To begin with, suppose
both agents are risk-neutral.2 If so, then there exists an efficient solution that consists in sell-
ing the pie: the principal sells the firm at a given price P to the agent, who becomes residual
claimant over the firm’s profit flow generated by the agent’s effort. The moral hazard prob-
lem has thus disappeared altogether because there is no longer any agency relationship: it
is in the agent’s best interest to choose an effort that maximizes the difference between the
revenues R(e(ε), ε) and the transfer price P, for any state of the world.

Assume instead (more realistically) that the principal is risk-neutral while the agent is
risk-averse, so that the latter will request a higher remuneration under hidden information
as compared to the case of hidden action. This generates a trade-off between the insurance
against bad states of the world requested by the risk-averse agent and the need for the prin-
cipal to design the most efficient incentive scheme for the agent in order to align the effort
of the latter to the firm’s objective.

The presence of an uncertain state of the world involves defining the objective functions
in expected-value terms (as we did in Chapter 3 when we dealt with the Nash equilibrium in
mixed strategies). Let the two players’ expected utilities be

EV(R(e(ε,w), ε) −w(R(e(ε,w), ε))) (9.2)

and

EU(R(e(ε,w), ε),w(R(e(ε,w), ε))) (9.3)

respectively, for the principal and the agent.
The contract (or, the wage) must solve the principal’s problem defined as the following

constrained maximization programme. The principal chooses the wage w so as to maximize

EV(R(ê(ε,w), ε) −w(R(ê(ε,w), ε))) (9.4)

subject to the constraints

EU(R(ê(ε,w), ε),w(R(ê(ε,w), ε))) ≥ EU(R(e(ε,w), ε),w(R(e(ε,w), ε))) (9.5)
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for all e 	= e∗, and

EU(R(ê(ε,w), ε),w(R(ê(ε,w), ε))) ≥ �U (9.6)

The agent chooses the effort ê so as to maximize his/her expected utility
EU(R(e(ε,w), ε),w(R(e(ε,w), ε))), instead of the principal’s profits. This explains the
presence of condition (9.5), the so-called incentive compatibility constraint. Condition (9.6)
spells out the participation constraint: by accepting the contract, the agent must get at least
the reservation utility �U .

I will not delve into the details of the solution of the principal’s problem, as the mathemat-
ics involved goes well beyond the scope of the present book. From a purely qualitative point
of view, I will confine myself to stressing that the solution of the constrained problem (9.4)–
(9.6) yields a second-best equilibrium: by this, it is meant that the resulting wage ŵ and
effort ê, in general, will fall short of maximizing the principal’s objective EV(·). A numer-
ical example will help to grasp the intuition governing the rather intricate game going on
between principal and agent.

9.1.2 Example

Consider a firm, with a principal and an agent. The labour input of the agent yields an out-
put y, sold on the market at a fixed price p̄ = 10. The agent’s effort can be either high, ē = 2,
or low, e = 1. The state of the world can be either good or bad, so that:

• if e = ē, we observe ȳ = 100 with probability p = 2/3 and y = 50 with probability
1 − p= 1/3; and

• if e = e, we observe ȳ = 100 with probability p = 1/3 and y = 50 with probability
1 − p= 2/3.

That is, the occurrence of the unfavourable state of the world makes the attainment of the
low output more likely, just by flipping the two probabilities over.

The agent is paid a certain wage w, so that the firm’s (or equivalently, the principal’s) prof-
its are πp = p̄y − w, and for simplicity we may put V = πp. Correspondingly, the objective
function of the agent is defined as U = √

w − e2, showing a taste for salary and an aversion
to effort. To complete the picture, let’s fix the agent’s reservation utility at �U = 4.

To begin with, we may quickly deal with the benchmark case in which information is
symmetric, i.e., the agent’s effort is indeed observable by the principal. If so, the latter can
force the agent always to accept a fixed wage contract bringing the agent’s utility down to
the reservation level �U for both e = ē and e = e:

• If e = e = 1, then imposing U = �U yields
√

w − 1 = 4 and therefore w(e) = 25. As a
result, the principal’s payoff amounts to

V (e)=πp(e)= 2(500 − 25)

3
+ 1000 − 25

3
= 1925

3
� 641.6 (9.7)

• If e = ē = 2, then imposing U = �U yields
√

w − 4 = 4 and therefore w(ē) = 64. As a
result, the principal’s payoff amounts to

V (ē)=πp(ē)= 500 − 64

3
+ 2(1000 − 64)

3
= 2308

3
� 769.3 (9.8)
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Now suppose information is asymmetric. From (9.4)–(9.6), we may write the principal’s
constrained optimization problem as follows. The owner of the firm has to set two wage
levels, w(ȳ) and w(y),3 to maximize

EV(ē)= 500 −w(y)

3
+ 2(1000 −w(ȳ))

3
(9.9)

under the incentive compatibility constraint

EU(ē)≥ EU(e), i.e.,
2
√

w(ȳ)

3
+ w(y)

3
− 4 ≥ 2w(y)

3
+

√
w(ȳ)

3
− 1 (9.10)

and the participation constraint

EU(ē)≥ �U , i.e.,
2
√

w(ȳ)

3
+ w(y)

3
− 4 ≥ 4 (9.11)

This programme defines the wage schedule that must be offered to the agent in order for the
latter to yield a high effort level. To identify the two unknown variables, w(ȳ) and w(y),

one has to use the notion that the constraints (9.10) and (9.11) will be satisfied at the margin,
that is, as strict equalities. Accordingly, from (9.10) we obtain√

w(ȳ) =
√

w(y)+ 9 (9.12)

which can be plugged into (9.11) to obtain

18 + 3
√

w(y)= 24 (9.13)

so that w(y)= 4 and therefore, using (9.12), w(ȳ)= 121.
Now we can simplify expression (9.9) to measure the expected value of the principal’s

payoff under asymmetric information:

EV(ē)= 500 − 4

3
+ 2(1000 − 121)

3
= 2254

3
� 751.3 (9.14)

To conclude the exercise, note that

V (ē)> EV(ē)> V (e)

w(ȳ) > w(ē), w(y)<w(e) (9.15)

Under asymmetric information, the wage schedule inducing the agent to choose the high
effort level is such that: (i) the firm’s expected profits are lower than the level they would
attain, for the same effort level, without asymmetry, but still higher than they would be
in the unfavourable case with symmetric information; and (ii) the agent must be punished
(respectively, rewarded) when the output is low (respectively, high) as compared to what
he/she would receive when producing the low (respectively, high) effort under symmetric
information.
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9.1.3 Adverse selection: the market for ‘lemons’

As anticipated above, the phenomenon of adverse selection is usually associated with the
existence of asymmetric information across agents about some relevant features (quality,
durability, etc.) of the goods being traded: producers/sellers know more than (potential)
purchasers.

This is particularly true for experience goods,4 whose quality is not only unknown a pri-
ori but is not immediately verifiable by purchasers, who have to use them for a while in
order to ascertain their real quality. This typically holds for durable goods such as clothes,
cars, TV sets, washing machines, cameras, etc., but also applies to non-durables (food, for
instance). In any such cases, informative and persuasive advertising are relevant instruments
in the hands of firms to send convincing messages (although not necessarily reliable ones)
to consumers. A solution to the adverse selection problem is warranty: warranty goods are
a subclass of experience goods with unobservable quality at the time of purchase, which are
sold accompanied by a full refund warranty if the customer is not satisfied with them (goods
must be brought or sent back to sellers after a reasonable amount of time, say a couple of
weeks or so). By attaching a full refund warranty to experience goods, sellers are taking the
burden of the risk associated with asymmetric information onto themselves, putting their
customers in a condition of complete neutrality.

As an introductory illustration of the adverse selection problem, here we look at the
famous model given by Akerlof (1970), concerning the second-hand car market. The role
played by the state of the world in the agency problem is played here by the type of the good
(or equivalently, of the seller). The players are a seller, s, and a (potential) buyer, b. The
seller owns a car that he/she would like to sell to someone interested in a second-hand auto-
mobile. The quality θ of the used car is either high (H) or low (L); it is known to the seller,
of course, but is unobservable to the buyer, who has solely information about the probability
that any used car be good or a ‘lemon’: let’s say that the probability of H is p(H), while the
probability of L is p(L)= 1 − p(H). For simplicity, we may set

p(H)= p(L)= 1

2
(9.16)

which, by the way, is also a sort of standard conjecture should the potential buyer be com-
pletely unaware of the probability of running across a lemon. Note that, assuming each seller
has a single car, when nature extracts a car of either type from the whole population of
second-hand cars, we could say as well that it is extracting a seller of either type from the
corresponding population of sellers.5

Now, the buyer’s problem is to bid a price for the car without observing its quality pre-
cisely. Of course, under symmetric information the fair prices for the two types would be
pH = H and pL = L , but the buyer cannot tell the type on the spot. Therefore, the best b can
do is to offer

pE(θ) = H + L

2
(9.17)

the price corresponding to the expected quality level, given the probabilities attached to each
type. The problem is that

H > pE(θ) > L (9.18)



March 1, 2011 13:27 Pinched Crown A Page-136 GTSS_Chapters

136 The role of information

and consequently

• any type-L seller would be happy to sell, but then the buyer shouldn’t buy because the car
is a lemon; and

• all high-quality cars disappear from the market because their owners do not want to
undersell them.

Of course, at this point lemons can be traded at their fair price. The repetition of the game
(at least twice, but not necessarily more) may allow players also to trade good cars at the fair
price, provided sellers know the identity of all sellers who left the market corresponding to
pE(θ). If so, then repetition yields a separating equilibrium, in which buyers can tell lemons
from good cars, i.e., can separate the two types. I will come back to this notion when I
illustrate incomplete information games.

The foregoing discussion can be summed up in the following remark.

REMARK 9.1 Under incomplete information, private (conflicting) incentives are bound to
produce market failures. That is to say, the allocation of goods and services will be, in gen-
eral, inefficient, as any uneven distribution of relevant information across the population of
agents is bound to affect their incentives and the resulting price or wage schedule.

You may guess that a repeated game over an infinite horizon may open the way to a
different equilibrium. Well, yes, this is indeed the case. The extension to allow for repeated
interaction is illustrated below, in the section dedicated to incomplete information, where
we will resort to a supergame in order to revisit the lemons problem. We will contrast this
perspective with the simpler case where the game takes place only twice, to highlight the
bearings of incomplete information and reputation on players’ strategies and ultimately on
the equilibrium outcome of the game.

9.2 Incomplete information
Governments never learn.
Only people learn.

Milton Friedman

Information incompleteness is usually captured in games by the assumption that some of the
players do not know one or more relevant features characterizing the identity of other players.
This is formalized by the notion of player type, as we have briefly seen in the game about
the market for lemons. Uninformed players only know the exogenously given probability
distribution of the rivals’ types.

To solve games taking place under incomplete information, one has to construct a refine-
ment of the Nash equilibrium concept, which was originally constructed for games of
complete information. Thanks to a very smart transformation that was introduced by John
Harsanyi (1967/68), an incomplete information game can in fact be solved as one in which
information is complete but imperfect. The resulting solution concept is called Bayes–Nash
or simply Bayesian equilibrium, and relies upon the so-called Bayes’ rule. The rigorous
derivation of the latter requires some basic concepts of statistical inference that I will con-
fine to the appendix to this chapter. Here, it will be sufficient to explain the matter in purely
intuitive terms.
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Suppose you are facing the perspective of observing either of two mutually exclusive
events, say, A or B, tomorrow. And you assign a prior probability to each of them. When the
time comes, you indeed observe one, say, A, and not the other. Now, each of the two events
may be driven by different causes, say, two, c1 and c2. In order to single out (if that is at all
possible) the exact source of event A, you have to make a rational guess. What sort of guess?
Your inference has to be based on the observation of the event. What you may do is just to
assess the probability that the cause is indeed c1 (or c2) given your observation of event A. If
the occurrence of A conveys some relevant information, then you may revise your priors in
such a way that the occurrence of A reveals that, for instance, the cause is in fact c1. In such
a case, you obtain a separating equilibrium since you can tell c1 from c2. Otherwise, if A is
not informative, your priors remain unchanged. In this case, you are ‘trapped’ in a pooling
equilibrium because c1 and c2 remain, so to speak, overlapped, and you are unable to single
out which one has caused event A.

A simple example will help. Suppose a boy has invited the girl he’s secretly in love with
to dinner at the best restaurant in town. He’s asking himself whether she loves him back or
not, and assigns to either event a probability of 1/2. (OK, this may sound overoptimistic, but
after all it’s just a trivial example.) Let’s say, for simplicity, that she may reply either ‘Yes,
let me check my diary’ or ‘No, never in a lifetime’. The first answer, if objectively evaluated,
is uninformative: dining does not really imply anything, does it? Therefore, priors remain
50/50 (or whatever they were). The second answer is informative, and our young man can
revise his priors, which become zero and one, respectively.

If the basic idea is clear, we may pass on to re-examine the entry game that we met in
Chapters 4 and 5, introducing a new element of incomplete information to make the model
a bit more realistic. The game you are about to see dates back to Kreps and Wilson (1982a)
and Milgrom and Roberts (1982a, b).

9.2.1 The entry game again

The structure of the constituent game is a variation on the theme proposed by Selten (1978)
and Dixit (1979). Therefore, it replicates essentially the same structure as Matrix 5.5. Players
are an incumbent, I, and an entrant, E . The entrant may either enter (e) or not (ne); the
incumbent may either accommodate (a) or fight ( f ) entry. In the remainder, I will assume
that the following payoff sequence holds for the entrant:

πd > 0 >π E
w (9.19)

The interpretation is the same as in the game summarized by Matrix 5.5: if the incumbent
accommodates entry, a duopoly with positive profits takes place; while if the incumbent
triggers a price war, the negative payoff π E

w denotes the entrant’s loss.
Things are different for the incumbent, though. The latter can be one of two very different

types: weak (W ) or tough (T ). If I is weak, then its payoffs in the various outcomes follow
the ranking:

πM >πd > 0 >πW I
w (9.20)

with πM and πW I
w measuring monopoly profits and the losses caused by a price war,

respectively. If instead the incumbent is of the tough type, the following payoff sequence
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Matrix 9.1 Entry with incomplete informa-
tion, I: I is weak

I
a f

E e πd;πd π E
w ;πW I

w
ne 0;πM 0;πM

applies:

πM >πT I
w >πd > 0 (9.21)

whereby in such a case the incumbent prefers a price war to the relaxed life of a duopoly
equilibrium. This can be justified on the basis of the idea that an incumbent may bear sig-
nificantly lower costs than a newcomer, and therefore can very much look forward to the
perspective of starting off a price war in order to prey upon the entrant.

Matrix 9.1 portrays the constituent (or one-shot) game in the case of a weak incumbent,
while Matrix 9.2 represents the game in which the entrant faces a tough incumbent.

As we already know, the original one-shot version of this game is fully symmetric, with
π E

w = π I
w = πw, and thus it has two pure-strategy Nash equilibria: (e,a), where a duopoly

emerges at equilibrium; and (ne, f ), with the incumbent retaining its monopoly power. The
issue of multiplicity can be quickly solved by observing that, given the chain of inequalities
in (9.20), the adoption of an aggressive behaviour is not a credible strategy because f is
weakly dominated for the incumbent. Outcome (e,a) can instead be reached at the intersec-
tion of weakly dominant strategies by iteration and is also subgame perfect in the sequential
play version of the game, with the entrant moving at the root of the corresponding Kuhn tree.

All of this would still apply here in the first version of the game (Matrix 9.1), if infor-
mation were complete for the entrant. However, the second version (Matrix 9.2) gives rise
to a completely different story. Here, the incumbent has f as the weakly dominant strat-
egy, and therefore, when I is tough, (i) (e,a) is not an equilibrium (because πT I

w > πd), and
(ii) (ne, f ) is the unique equilibrium, because a tough entrant would always fight!

The entrant has an a priori distribution of probabilities over the incumbent’s types, p(T )

and p(W ), with p(T )+p(W )=1. Accordingly, from the standpoint of E , the one-shot game
looks as in Matrix 9.3.

Matrix 9.2 Entry with incomplete informa-
tion, II: I is tough

I
a f

E e πd;πd π E
w ;π T I

w
ne 0;πM 0;πM

Matrix 9.3 The entrant’s view of the game
under incomplete information

I
a f

E e πd;πd π E
w ;p(T )π T I

w + p(W )πW I
w

ne 0;πM 0;πM
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When trying to figure out the outcome of the one-shot game, the entrant has to evaluate
the behaviour of the incumbent. If E does so on the basis of the above matrix, the essen-
tial feature allowing the entrant to forecast I ’s strategy is the comparison between πd and
p(T )πT I

w + p(W )πW I
w . Two alternatives are admissible:

• If the prior probability of encountering a tough incumbent is low enough,

p(T )<
πd − p(W )πW I

w

πT I
w

(9.22)

then

πd > p(T )πT I
w + p(W )πW I

w (9.23)

This would imply that, as in Matrix 9.1, the game yields two equilibria, (e,a) and (ne, f ),

the former being in weakly dominant strategies.
• If, instead, the prior probability of encountering a tough incumbent is high enough to

reverse both (9.22) and (9.23), the game has a unique equilibrium in weakly dominant
strategies, (ne, f ), as in Matrix 9.2.

The puzzling aspect of the story is the determination of priors and the problem of veri-
fying whether these are indeed correct or not. To perform this twofold task, E must rely on
historical information about the reaction of I to previous entries by other firms in the past
(which may or may not exist or be readily available to E), and ultimately try his/her luck by
entering the market and see what the incumbent actually does. So, the one-shot version of
the game does not tell us that much, does it?

Accordingly, let’s say that it is repeated over time, and, in order not to complicate the
set-up too much, we may suppose that it takes place twice, with t = 0,1. Both firms share
the same time preferences, measured by the discount factor δ ∈ [0,1]. We are looking for a
subgame perfect Bayesian equilibrium.

In order to characterize the equilibrium strategies, we have to comparatively assess the
following discounted profit flows for the incumbent:

π K I
w + δπM (9.24)

with K = T, W depending on the incumbent’s type, and

πd + δπd = (1 + δ)πd (9.25)

Expression (9.24) is the flow of profits that I gets by fighting entry in the first period and
remaining an uncontested monopolist in the second, while expression (9.25) is the alternative
profit flow generated by accommodation in the first period, whereby we observe a duopoly
in both.

The problem generated by incomplete information is therefore that E must: (i) formulate
some prior probabilities attached to the two possible types of incumbent, p(T ) and p(W );
(ii) evaluate the expected profit flow that it can gain by entering at t = 0, in order to evaluate
its own a priori incentive to enter; (iii) observe I ’s reaction to entry (i.e., whether the incum-
bent fights or not); and finally (iv) possibly use such observation – if informative about the
type – to revise priors and tell exactly the incumbent’s type.
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Given the priors, the entrant’s incentive is determined by the sign of

p(T )π E
w + p(W )πd = p(T )π E

w + [1 − p(T )]πd (9.26)

If the above expression is positive, E will always enter, as expected profits are positive even
in the presence of a tough incumbent. If instead (9.26) is negative, the entrant will be willing
to enter only if the incumbent is weak and accommodates entry. But getting this piece of
information is impossible if E stays out.

Of course, the incumbent is aware of the conjectures going on in the entrant’s mind, and –
under some specific condition that we are about to identify – can manipulate the game using
the fog of information incompleteness affecting the entrant. The outcome of the repeated
game crucially depends on two inequalities, capturing the incentives of the incumbent’s two
different types, respectively:

π T I
w + δπM >(1 + δ)πd (9.27)

and

πW I
w + δπM

?
≶ (1 + δ)πd (9.28)

Inequality (9.27), which is always verified due to the fact that πT I
w > πd for type T,

immediately implies the following remark.

REMARK 9.2 A tough incumbent will always fight entry.

Conversely, inequality (9.28) may take either sign, because, on the one hand, πW I
w <πd on

the basis of (9.20), but, on the other, πM >πd. Therefore, this implies the following remark.

REMARK 9.3 If πW I
w + δπM > (1 + δ)πd, a weak incumbent will surely fight, mimicking

the natural behaviour of type T . Conversely, if πW I
w + δπM <(1+ δ)πd, a type-W incumbent

has no incentive to fight to mimic type T .

On these bases, one may draw the following conclusions, summarized in a theorem.

THEOREM 9.1 If

p(T )π E
w + [1 − p(T )]πd > 0 and πW I

w + δπM <(1 + δ)πd

the weak incumbent doesn’t fight (as opposed to a tough one, that always does). In such a
case, we have a separating equilibrium, since observing a (respectively, f ) in the first period
allows the entrant to deduce correctly that the incumbent is weak (respectively, tough).
Accordingly, the second period takes place under complete information, as the entrant has
been able to revise its priors to zero and one, depending on the incumbent’s behaviour.

If instead

p(T )π E
w + [1 − p(T )]πd < 0 and πW I

w + δπM >(1 + δ)πd

a weak incumbent has an incentive to fight in the first period as if it were tough in order
to retain monopoly power in the second period. As a consequence, in this case we have a
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Matrix 9.4 Shall we fight for
natural resources?

B
a f

A i R/2; R/2 π A
w ;π B

w

ni 0; R 0; R

pooling equilibrium, the entrant being unable to extract any information about the incumbent
from its observed behaviour.6

That is, by adopting an aggressive stance, the weak incumbent builds up a reputation of
being tough – although it is not really the case – and the entrant is altogether unable to revise
its prior probability conditional upon observed behaviour.7

9.2.2 A wargame under incomplete information

The fact that I have been dwelling upon the entry game for so long is most probably due
to my being an economist. Do you want to know something about the role of incomplete
information in a game belonging to the field of international relations? OK, here we go. Just
take the above structure and tailor a new story around it.

The players are now two countries, A and B. At the outset, country B has monopoly
rights over some valuable natural resource R (say, oil) located some place else, say, in a
third country that is not playing a direct role in the game. Country A badly desires to hold
a share of R, and is contemplating military aggression or an invasion of the third country
(strategy i) to obtain it. Of course, A has the option not to do anything like that (strategy ni).
Country B may either appease (a) or strike back ( f for fight). The snapshot of the game is
shown in Matrix 9.4.

Clearly, R > R/2>0. As in the previous game, the cornerstone of the model is one player’s
incomplete information about the opponent’s type. Country B can be either of the tough type
(in which case π B

w = π BT
w > R/2) or of the weak type (with R/2 > 0 > π B

w = π BW
w ) and

country A has priors p(T ) and p(W ), to be eventually revised upon observing the adoption
of either strategy on the part of B. The solution follows exactly the same lines as in the
previous game, and therefore I leave its details to you, as a useful exercise.

By the way, the same considerations apply in the extreme case, where the game is as in
Matrix 9.5. Here, an invasion puts country A in full control of R, and leaves B with nothing.
In this setting, we have either R/2 > 0 > π BW

w or R > π BT
w > 0, and again we may observe

either a separating or a pooling equilibrium depending on the relative size of country B’s
discounted payoff flows. This formulation, although highly stylized, gives a hint about the
mechanism that led to the First Gulf War, doesn’t it?

Matrix 9.5 A ‘radical’ version of the same
game

B
a f

A i R;0 π A
w ;π B

w
ni 0; R 0; R
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9.2.3 Product quality, reputation and signalling

Let’s go back to the ‘lemons’ market. In the field of industrial organization, a great deal of
research has been carried out to understand firms’ incentives to supply high-quality goods or
conversely to distort quality downwards under asymmetric or incomplete information.

Leaving aside the possibility of introducing a warranty, a way out is offered by the rep-
etition of the game (which, admittedly, is more viable for non-durables, like food, than for
durables, like TV sets). The introduction of time may simplify the matter if quality is time-
invariant, in which case consumers learn by experience all they need to know about the goods
they purchase. Otherwise, if quality does change across periods, time considerably compli-
cates the picture, as producers may want to modify quality from one period to another for
strategic reasons, so that the adverse selection issue existing in the first period becomes a
moral hazard problem from the second period onwards.

Let’s consider first the simpler case in which quality is constant. One relevant question,
among others, is whether sellers may adopt introductory offers – low prices – to convince
consumers to buy. Can we expect a high-quality firm to make introductory offers? And, is it
more or less keen on doing so than a low-quality firm?

A low price can attract more customers than a high one, and these customers may be
happy to discover that the intrinsic value of their purchases is higher than expected at that
low price. Yet, in order for price to convey information (and a signal of high quality), the
gain generated by repeated trade must outweigh the cost advantage enjoyed by the low-
quality firm. Under this condition, the signalling mechanism may indeed work in favour of
the high-quality product.

A costly commitment usually associated with experience goods is advertising. In con-
nection with it, the question is whether high-quality firms invest more or less money than
low-quality firms in advertising campaigns. Casual observation suggests that high-quality
goods need not be intensively advertised: have you seen many TV spots trying to convince
anyone that Ferrari or Porsche are top-notch cars? I haven’t. Yet, there is a lively discussion
dating back to the early days of industrial organization theory about it, and also the empir-
ical evidence is far from being conclusive – see Kihlstrom and Riordan (1984) and, for the
empirical evidence, Caves and Greene (1996), inter alia.

The alternative version of the problem is that where quality can be modified over time.
Any firm selling an experience good (in particular, if it’s durable, and under the simplifying
assumption that full or partial reimbursement is ruled out) has a strong incentive to decrease
quality as time goes by, giving rise to a combination of adverse selection (in the first period)
and moral hazard (thereafter). Repetition, however, can alleviate this phenomenon through
the reputation that the seller may want to build up. In a repeated game, consumers may stop
purchasing (for example, as a result of information obtained by word of mouth from previous
purchasers) to punish a seller that is cheating on quality. A high profit margin thus emerges
as a quality premium, in that (i) it rewards a reliable firm, that could otherwise be punished
by consumers by simply not patronizing it any more, and (ii) it must be high enough to offset
the temptation to decrease production costs by decreasing the quality level. These aspects are
illustrated in two games we are about to see, introduced in the literature by Klein and Leffler
(1981) and Shapiro (1983), respectively. The first is indeed a supergame over an infinite
horizon, with asymmetric information.8

The players are a monopoly firm and a consumer. The firm supplies a single good of
quality θ that, for simplicity, can be either high, H , or low, L . The unit cost of producing
the high quality is cH , while that associated with the low quality is cL , with cH > cL . Time
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is t = 0,1,2,3, . . . ,∞, and δ ∈ [0,1] is the constant discount factor. Assume that it takes a
period to ascertain the actual quality of the good, so that the consumer gets to know at t + 1
the exact value θ of the unit purchased at t . The firm’s reputation depends on the consumer’s
expectations about quality at time t + 1, which in turn are based on the quality observed at t .

To model the behaviour of players in the supergame, we may adapt the rules of Friedman’s
(1971) perfect folk theorem to the present set-up, in the following way. The firm starts off
at t = 0 by supplying θ = H, at a price equal to pH > cH . Subsequently, quality can be
modified – i.e., brought down to L – and sold at the same price pH , but only for a single
period, as this spell is sufficient for the consumer to discover that he/she has paid a high price
for a low-quality good, and therefore selling him/her quality L at pH becomes impossible.
More importantly, a single deviation by the seller is sufficient to destroy any reputation the
firm may have, once and for all. If in any of the remaining periods the firm should ‘claim’
that the quality of its good is high again, the consumer would not be willing to buy anyway.
This is, admittedly, a ‘static’ form of reputation, but is not too far from reality.

By now you should be familiar with the technicalities, so I’ll go straight to the result. If
the firm adopts the initial strategy forever, without any tricks, the resulting discounted flow
of profits is

�H = (pH − cH )(1 + δ + δ2 + δ3 + · · · )= pH − cH

1 − δ
(9.29)

We may compare it with the alternative payoff generated by a one-shot deviation towards L ,

sold at pH . This yields the condition whereby the firm sticks to H forever and the consumer
rewards its reliability:

pH − cH

1 − δ
≥ pH − cL (9.30)

or, equivalently,

δ ≥ cH − cL

pH − cL
(9.31)

which surely belongs to the unit interval (i.e., it is an admissible value of the discount factor).
A reputational effect can also be singled out in a simple two-period framework. To see this,

it suffices to introduce incomplete information by considering that a seller may be either
honest or dishonest, and the consumer a priori can only formulate a probabilistic guess,
and then possibly revise it on the basis of available information. The model is the same as
above, with one additional detail only, concerning the description of consumer preferences,
modelled as follows:

u = mθ − p (9.32)

The utility (or surplus) function u measures the difference between the satisfaction given
by the consumption of a good of quality θ and the price, p. Parameter m is the so-called
willingness to pay for quality, which is increasing with income: to put it bluntly, richer people
are more keen on paying higher prices for superior quality levels than poor people.9
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The rules of the game are as follows:

• at t = 0, the consumer ‘trusts’ the seller and buys one unit of the good, whose quality is
fully revealed at the beginning of the second period; and

• at t = 1, if θ = L and p = pH , the consumer concludes that the seller is dishonest,
and doesn’t buy (or recommends others not to); otherwise, if either (θ = L , p = pL) or
(θ = H , p = pH ), the consumer knows that the seller is honest, and buys again.

Accordingly, if the immediate cost advantage is higher than the discounted value of the
maximum losses the seller will suffer because the consumer will not buy any more, cheating
on product quality is a dominant strategy for the seller. Formally, this happens if the cost
differential exceeds the profit margin, duly discounted:

cH − cL >δ(θ H − cL) (9.33)

whereby the seller acts dishonestly, the consumer becomes aware of that and a separating
equilibrium obtains.

If, instead, the opposite holds, with cH − cL <δ(θ − cL ), the reputational effect dominates
the cost advantage, so that a dishonest type has an incentive to replicate the behaviour of the
honest type, and will supply a high-quality good at pH . As a consequence, observation is not
informative and the consumer is unable to revise prior probabilities. This yields a pooling
equilibrium.

9.3 Forward induction
Successful investing is anticipating
the anticipations of others.

John Maynard Keynes

Thus far, throughout the volume, the leitmotiv underlying a player’s rational choices has been
backward induction. In any sequential play game, this criterion instructs a player to figure
out the consequences of his/her decisions on the strategic behaviour of other players moving
thereafter. So, what we do on this basis is to outline the unravelling of the game backwards,
by endowing players with a forward-looking attitude.

There exists, however, an obvious alternative that, as we shall see in a short while, is
very intriguing and can indeed provide startling new insights: it is the concept of forward
induction, whereby each player – in order to forecast future developments, and ultimately the
equilibrium outcome, starting from any node of a sequential play game – has to understand
correctly the reasons why the game has reached that particular node and not others. To do
this, every player has to interpret the behaviour of any other players that moved at previous
nodes. This also entails that each player uses a more or less implicit signalling mechanism
at every node, so as to transmit to others a rational hint about what he/she expects to happen
in the remainder of the game.

The criterion of forward induction was introduced in a seminal paper by Kohlberg and
Mertens (1986), and can be illustrated through a simple example. Observe the game tree in
Figure 9.1.

Player 1, at the root, decides whether to stay out of the game (o), or enter it (‘stay in’, strat-
egy i). If 1 stays out, the game is over and payoffs are 8 for player 1 and 20 for player 2. If 1
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o

t b

l r l r

8, 20

10, 10 0, 5 5, 0 7, 7

Figure 9.1 A forward induction game

chooses i , we have an imperfect information game starting at the node located at the second
stage. Remember that, following Harsanyi, an incomplete information game can be solved
as one of complete but imperfect information, so you may think of the tree as representing a
game of incomplete information. The subgame starting at the second node from the top (after
1 has chosen i , and 2 has observed it) is a coordination game yielding two Nash equilibria,
(t, l) and (b, r), that can be Pareto-ranked. Both players clearly prefer (t, l) to (b, r) but,
under simultaneous moves, mistakes are indeed round the corner and one should account
for the problematic solution in mixed strategies. Here is where forward induction helps to
build up an equilibrium selection mechanism solving the coordination problem. If 1 is in,
this fact transmits crucial information to player 2, as 1, by staying out, could get a payoff
equal to 8 > 7. Therefore, player 2 should think: ‘if 1 has chosen i at the root, it is because
he/she will play t, as 10 > 8’. That is, forward induction permits players to exclude ‘out-of-
equilibrium beliefs’: in this case, expecting 1 to choose b would be unreasonable because
1 can simply do better by playing o at the root.10 Following this line of reasoning, forward
induction selects (t, l). In other words, the behaviour of player 1 at the initial node ignites a
signalling mechanism such that player 2 can figure out why 1 has played so and not in some
alternative way.

Additionally, observe that the following remark may be made.

REMARK 9.4 Applying iterated deletion of (at least weakly) dominated strategies yields
the same equilibrium as selected by forward induction, while in general the equilibria
selected by backward and forward induction, respectively, do not coincide.

Proving the second part of Remark 9.4 is trivial. It suffices to observe that, since the inter-
mediate nodes pertaining to player 2 in Figure 9.1 are not singletons, backward induction
does not solve the problem posed by the multiplicity of Nash equilibria.

In order to sketch the proof of the first part of the remark, and appreciate its wide-ranging
implications, you can just take a look at the strategic form of the same game, represented in
Matrix 9.6, which has been built up by adding a third row to Matrix 3.13.
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Matrix 9.6 Iterated dominance and for-
ward induction

2
l r

i t 10;10 0;5
1 ib 5;0 7;7

o 8;20 8;20

Strategy profiles i t (in, then top) and ib (in, then bottom) describe the alternative choices
of player 1 after deciding to stay in the game and interact with 2. Examine the matrix from
the standpoint of 1: ib is strictly dominated by o, so the second row can be deleted. This
is known to 2, that, on the remains of the matrix, finds out that l weakly dominates r. The
last step consists in observing that the reduced form of the matrix (the 2 × 1 column where
2 surely plays l and 1 chooses between i t and o) is such that 1 has in i t a dominant strategy.
Therefore, iterated dominance leads indeed to the same equilibrium outcome as forward
induction.

The above structure can be applied to several different problems. One obvious candidate
could be some version of the entry game we have seen many times – precisely for this reason,
I won’t spell out this example in detail. In a nutshell, if entry can give rise to two different
equilibria, one with low profits and the other with high profits for both firms, and the outsider
has the option to stay out and get more money than a price war would yield, then entry has
a signalling value, inducing the incumbent to believe that the entrant points at a ‘peaceful’
duopoly equilibrium. If you are not already bored to death by entry games, you may see
Brandts and Holt (1992). Instead, I will briefly illustrate a version of this game that fits the
issue of entering an arms race or not.

9.3.1 Forward induction in arms races

The players are two countries, 1 and 2. Country 2 already has a nuclear arsenal, while coun-
try 1 is about to decide whether or not to build one for itself and become a member of the
‘nuclear club’, so to speak (strategies i for in and o for out, respectively). If country 1 enters
the club, the next issue for both countries alike is whether these weapons should be used
(strategy a for attacking) or not (strategy p for remaining peaceful). Matrix 9.7 illustrates
the strategic form of the game.

The 2×2 submatrix that obtains by disregarding the third row is a coordination game with
two Nash equilibria in pure strategies, (i p, i p) and (ia, ia). However, the payoff accruing to
country 1 by choosing o is such that the strategy profile ia is dominated.11 Using the same
mechanism as above, one gets to the conclusion that iterated deletion of dominated strategies
selects the equilibrium (i p, i p), ensuring perpetual peace through reciprocal nuclear deter-
rence. Now replace strategies and payoffs, wherever appropriate, in a game tree replicating

Matrix 9.7 Joining the ‘nuclear
club’

2
p a

ip 100;100 −1000;50
1 ia 50;−1000 0;0

o 60;200 60;200
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Figure 9.1, and solve it by forward induction under the assumption that, if country 1 goes in,
strategic interaction takes place simultaneously. You can easily verify that the equilibrium
outcome selected by forward induction is again (i p, i p).

Further reading

At a textbook level, you may read more about incomplete and asymmetric information in
Fudenberg and Tirole (1991), Myerson (1991), Montet and Serra (2003) and Rasmusen
(2006). On learning processes in games, see Fudenberg and Levine (1998). For a very clear
overview of the agency model, see the first chapter of Tirole (1988). The extension of the
agency model to the case of many agents is covered in Alchian and Demsetz (1972) and
Holmström (1982). The issue of using costly investments to signal product quality is dis-
cussed in Schmalensee (1978) and in Milgrom and Roberts (1986). Famous applications
to models of economic policy, insurance, credit and labour markets can be found in Akerlof
(1970), Spence (1973), Rothschild and Stiglitz (1976), Stiglitz and Weiss (1981) and Persson
and Tabellini (1990). The debate on forward induction is duly accounted for in a wonder-
ful book by van Damme (1991); see also van Damme (1989). For more on Bayes’ rule in
incomplete information games, see Mertens and Zamir (1985). For signalling games, see
Banks and Sobel (1987) and Cho and Kreps (1987).

9.4 Appendix: Bayes’ rule
The essence of Bayes’ result can be laid out as follows. Any random event � (generated, for
instance, experimentally – remember Schrödinger’s cat) occurs with some probability p(�)

belonging to the unit interval. If � occurs with absolute certainty, then p(�)= 1. Conversely,
if it’s impossible, p(�) = 0. The objective interpretation of probability holds it that

p(�) = number of favourable cases

number of all possible cases
(9.34)

Now suppose there are n mutually exclusive events �1, �2, . . . , �n . Their respective proba-
bilities must sum up to one:

p(�1)+ p(�2)+ p(�3)+ · · · + p(�n)= 1 (9.35)

Thus far, this is nothing really new. The additional step we have to take consists in grasping
the definition and the implications of conditional probability. Imagine that event �1 may
influence the probability of observing event �2. We shall indicate by p(�2 |�1) the probability
of observing �2 given the occurrence of �1, or simply the conditional probability of �2
given �1. Trivially, if

p(�2 | �1)= p(�2) (9.36)

then �2 is independent of �1, and whether event �1 has taken place or not is altogether
irrelevant for the probability of observing �2.

The compound probability that several independent events occur jointly is the product of
their individual probabilities. We define by

�1 ∩ �2 ∩ �3 ∩ · · · ∩ �n−1 ∩ �n (9.37)
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the intersection (that is what the symbol ∩ stands for) of the n events. The compound
probability of observing these n events jointly is

p(�1 ∩ �2 ∩ �3 ∩ · · · ∩ �n−1 ∩ �n)= p(�1) · p(�2) · p(�3) · · ·p(�n−1) · p(�n) (9.38)

If these events are not reciprocally independent, we must resort to conditional probabilities.
If you want to know the value of p(�2 | �1), after a little proof that I will skip here, you will
find out that

p(�2 | �1)= p(�2 ∩ �1)

p(�1)
(9.39)

When observing a generic event �, which could be generated by two alternative causes h1

and h2, one may formulate the following crucial question: What is the probability that � has
been brought about by either h1 or h2, respectively? To find the right answer, we may rely
on (9.39), and write

p(h1 | �)= p(h1 ∩ �)

p(�)
(9.40)

Moreover, we have

p(�) = p(h1 ∩ �)+ p(h2 ∩ �) (9.41)

that is,

p(�) = p(h1)p(� | h1)+ p(h2)p(� | h2) (9.42)

We’re almost there! Since

p(h1 ∩ �)= p(h1)p(� | h1) (9.43)

we have that, after plugging the relevant pieces into (9.40), this becomes

p(h1 | �)= p(h1)p(� | h1)

p(h1)p(� | h1)+ p(h2)p(� | h2)
(9.44)

which captures Bayes’ result (or, better, Bayes’ theorem), whereby one can compute the
ex post probability that the event � be driven (or generated) by h1.

In the jargon of the entry game formulated by Kreps and Wilson (1982a) and Milgrom
and Roberts (1982a), we may set h1 = T , h2 = W and � = f.

The entrant revises the priors p(T ) and p(W ) guided by the incumbent’s observed
behaviour, so that the ex post conditional probability that the incumbent is indeed of the
tough type, having observed aggressive behaviour, is given by the following expression:

p(T | f )= p(T )p( f | T )

p(T )p( f | T )+ p(W )p( f | W )
(9.45)

If the incumbent adopts strategy a, the entrant knows for sure that I is weak, and there-
fore sets p(W | a) = 1. This yields the separating equilibrium. If, conversely, the incumbent
chooses f, priors cannot be revised and the pooling equilibrium obtains.
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We get it on most every night
when that moon is big and bright
it’s a supernatural delight
everybody’s dancing in the moonlight
we get everybody here is out of sight
they don’t bark and they don’t bite
they keep things loose they keep it tight
everybody’s dancing in the moonlight

Sherman Kelly (King Harvest),
Dancing in the moonlight

The world we’re in can hardly be described by a series of cooperative games. If you have
gone through the previous chapters, you should be aware by now of how little coopera-
tion one may hope to observe in economics and politics, as well as in other areas of life.
Having said that, there are many aspects of economics, politics and international relations
where negotiations are most relevant, and therefore a book on game theory is incomplete if
it doesn’t contain an illustration of cooperative and bargaining games. However, explaining
and understanding these games is no easy task, because of the amount and nature of for-
mal analysis that they require even at an introductory level. Here, to keep the exposition in
line with the remainder of the book, I will lay out the basics of this very relevant part of
game theory, and propose two simple examples that give a flavour of the range of potential
applications.

Starting from the publication of the book by von Neumann and Morgenstern (1944), for
about 30 years research efforts were very intense in this area. Indeed, when game theory
was still relatively young, issues related to coalition formation and the design of stable
agreements across agents that could instead pursue conflicting goals were hot topics on the
agendas of most game theorists.1

There were two main routes along which research was being developed: the positive
approach and the axiomatic one. While the former is directed to shed light on the relationship
between cooperative games and the theory of general equilibrium in perfectly competitive
economic systems, the latter is characterized by a normative nature and investigates the
operational features of different solution concepts based upon the smallest possible set of
unproven intuitive axioms.

The essence of cooperative as well as bargaining games is that agents are supposed to be
able to design and implement strategies leading to a Pareto improvement as compared to the
outcome of the purely non-cooperative version of the same game.
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The problem then consists not in defining the basic layout of the game (players, their indi-
vidual payoffs and their admissible strategies can be defined in the same way as in Chapter 2),
but rather in understanding whether this cooperation is feasible and, above all, stable. Coop-
eration, in itself, means literally that individuals are assumed to choose their strategies in
a cooperative way. Bargaining has to do with the way they negotiate the partition of gains
across themselves – a peculiar activity that may be extremely conflicting.

A conceptual issue affecting the idea that agents may explicitly cooperate is the associated
need of postulating a common interest, which in turn points in the direction of discarding
altogether the alternative idea that each agent rationally seeks the maximization of his/her
own satisfaction, one of the cornerstones of (non-cooperative) game theory. This need was
first highlighted by Nash (1951). As a result, the development of this branch of bargaining
game theory is known as the Nash programme. This prompted the investigation of coopera-
tive games using the very same toolkit as employed for non-cooperative games, giving rise
to a branch of the theory focusing on strategic bargaining games, whose highest peak is the
work of Rubinstein (1982). Another way of putting it is that strategic bargaining games can
be a conceptual bridge between non-cooperative games and purely cooperative ones. The
difficulty with this approach to bargaining games is that it very often generates a multiplicity
of equilibria (requiring then refinements, as for the non-cooperative games we have reviewed
thus far). The axiomatic approach eliminates this problem by introducing sensible and desir-
able properties in the form of axioms, following Nash (1950b, 1953). Of course, in such a
case the critical aspect is the nature and specification of these axioms. To avoid the exposi-
tional and technical difficulties associated with the strategic bargaining approach, here I will
only tell you about the axiomatic approach to bargaining, and the Nash programme in which
it nests.

10.1 Bargaining games: the axiomatic approach
A peace is of the nature of a conquest;
for then both parties nobly are subdued,
and neither party loser.

William Shakespeare,
Henry IV

As anticipated above, the axiomatic approach is based upon a set of intuitive claims
(the axioms) describing some essential features that must be met by the set-up under exam-
ination (in our case, the game) and then draws some predictions relying on such intuitive
properties. More specifically, what Nash (1950b, 1953) does is use selected axioms to prove
that they lead to a unique outcome satisfying all of them at the same time. This is the
so-called Nash bargaining solution.

10.1.1 The Nash bargaining solution

To keep things as simple as possible, consider a two-player variable-sum game in which
each agent obtains a payoff or utility measured by ui (s), i = 1,2, for any given outcome
s = (s1, s2). The game is sketched in the utility or payoff space in Figure 10.1, which closely
resembles Figure 5.2.

Let the pair (u1(d),u2(d)) identify the utility levels accruing to each agent if they
disagree. This is the disagreement or threat point D, which players can always reach non-
cooperatively if bargaining breaks down and they fail to reach an agreement – in fact, it can
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Figure 10.1 The feasible set

be thought of as the Nash equilibrium of the non-cooperative version of the same game.
The dotted region DBB ′ defines the feasible set, i.e., the set of all outcomes that (i) are
Pareto-efficient as compared to the disagreement point, and (ii) can be reached through the
bargaining process starting from the same point.

No details about the bargaining process or the agreement between players are given. What
Nash does is just to outline the equilibrium solution, which, in his view, must drive players
onto the Pareto frontier of the feasible set. The Nash bargaining solution (NBS) is attained
by maximizing the so-called Nash product:

(u1 − u1(d))(u2 − u2(d)) (10.1)

with respect to u1 and u2. The individual utilities (u1(d),u2(d)) associated with the dis-
agreement point being given, the Nash product (10.1) changes with u1 and u2 in such a way
that it draws a map of curves that are convex towards the origin of the axes, as in Figure 10.2.

The maximization of (10.1) must be compatible with the constraint, namely, that players
have to choose a point within the feasible set, or, at most, along its frontier. Therefore, (10.1)
is indeed maximized when agents locate at the tangency point between the Pareto frontier
of the feasible set and the highest possible curve generated by (10.1) that is compatible with
the feasible set. This is point NBS in Figure 10.2. I will label its coordinates as (u∗

1,u∗
2).

The Nash bargaining solution relies on the following axioms.

• Individual rationality: u∗
i ≥ ui (d) for i = 1,2; trivially, this says that the Nash bargaining

solution must yield at least the same utility as the disagreement point.
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Figure 10.2 The Nash bargaining solution

• Invariance: the Nash bargaining solution is independent of the scale used to measure the
players’ utility; that is, changing from metres to yards or from kilograms to pounds does
not affect the solution.

• Pareto optimality: if (u1,u2) > (u∗
1,u∗

2), then (u1,u2) cannot belong to the feasible set;
this axiom says that neither player can unilaterally improve upon the Nash bargaining
solution without damaging the other.

• Independence of irrelevant alternatives: the Nash bargaining solution is unaffected by
excluding any feasible pairs of utilities not selected by players.

• Symmetry or anonymity: identifying players is irrelevant to the solution; this axiom could
be also read as ‘one man, one vote’.

Nash (1950b, 1953), in a theorem whose details I will skip, proves that his bargaining
solution is the only one meeting the whole of the axioms listed above. It is worth noting
that this axiomatic approach is common to Arrow’s impossibility theorem (Arrow, 1951)
that we encountered in Chapter 6. This is not happening by chance, of course: the axiomatic
approach has a strong tradition in twentieth-century mathematics in general.

To appreciate how the Nash bargaining solution can be used in practice, one may resort
to a simpler case where the efficiency frontier is a straight line. We already know a case that
has this feature: the cartel we have investigated in Chapter 5. There, we assumed that firms
were able to stabilize collusion along the supergame; here, we may revisit the same problem
assuming that firms resort to bargaining, no matter how long is the time horizon (in fact, a
one-shot game will do).
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Figure 10.3 Example: the linear frontier case in duopoly

If firms are identical, the disagreement point has coordinates (π N ,π N ), where utili-
ties coincide with profit levels, and the latter are measured by the non-cooperative Nash
equilibrium profits. This is a point like N in Figure 10.3, where the origin identifies the
Bertrand–Nash equilibrium with zero profits.

The Nash bargaining solution can be calculated by splitting equally the additional profit
pie generated by the cartel, using the following simple rule (see Muthoo, 1999):

π∗ =π N + πM − 2π N

2
= πM

2
(10.2)

which of course yields 50 per cent of monopoly profits to each firm. More interesting is
the case where the disagreement point (π N

1 ,π N
2 ) is asymmetric, with π N

1 	= π N
2 (due, for

instance, to asymmetric technologies or some degree of product differentiation). Also, in
this case, we can resort to the analogue of (10.2) to calculate the profits accruing to each firm
in the cartel:

π∗
i =π N

i + πM −π N
i −π N

j

2
(10.3)

although of course this results in an asymmetric partition of monopoly profits reflecting
the asymmetry in the disagreement point. Observe that collateral or side payments should be
allowed here as well as in other similar cases where some degree of asymmetry operates. The
technical label used to express this idea is that these must be games with transferable utility,
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where players can use some form of common currency (like money) to transfer payoffs
between each other.

The Nash bargaining solution has generated a lively debate and a large amount of research.
Possibly the most startling product of this research is the so-called Kalai–Smorodinsky
solution (Kalai and Smorodinsky, 1975), which adopts an alternative to the axiom of inde-
pendence of irrelevant alternatives, called the individual monotonicity axiom. The latter
requires that, if the feasible set is expanded, and this expansion benefits specifically one
of the players, then also the associated bargaining solution must benefit the same player.
Subsequently, Kalai (1977) introduced the egalitarian solution, which drops the invariance
axiom and can be considered as a compromise between the Nash bargaining solution and the
Kalai–Smorodinsky solution, since it imposes that

u∗
1 − u1(d)= u∗

2 − u2(d) (10.4)

i.e., bargaining must result in equal gains for all players as compared to the disagreement
point.

Furthermore, this stream of research has shown that, under some particular but plausible
conditions, which are likely to be verified often, the Nash bargaining solution and its non-
cooperative counterpart due to Rubinstein (1982) indeed coincide (see Binmore et al., 1986,
1992, inter alia).

These bargaining solutions can be used in games with many players (see, e.g., Harsanyi,
1977). In such cases, however, subgroups of players can form coalitions to safeguard the
interests of their members. This is the topic treated in the next section.

10.2 Cooperative games: a matter of coalitions
All the people like us are We,
and everyone else is They.

Rudyard Kipling

The bargaining approach outlined above is based on the idea that individuals activate bar-
gaining processes. The main body of cooperative game theory instead adopts the view
that individuals may join to form coalitions, the latter becoming the effective actors in a
cooperative game.

10.2.1 The positive approach to cooperation: the core

This approach postulates that players will adopt strategies apt to yield Pareto-efficient out-
comes. To this end, they can build up coalitions through binding commitments that, in view
of the design of the cooperative game, are credible. When examined from this angle, the main
task that cooperative game theory has to perform is to identify the appropriate mechanism
by which additional gains generated by cooperation are to be distributed over the population
of players. The main solution proposed by game theory in this respect is the core (Gillies,
1959).

To fix ideas, think of a simplified economic system where there is only trade but no pro-
duction. This is usually called a pure exchange economy, where, corresponding to a certain
list of relative prices, a number of agents (or coalitions thereof) trade all or part of their
respective endowments of goods or assets. This toy economy, for all those who are famil-
iar with microeconomics, is the basic framework usually presented to first-year students to
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illustrate for them for the first time the general equilibrium model dating back to Edgeworth
(1881).

By the very fact of entering this trading game – alone or as a member of a coalition – every
agent will get a payoff. To begin with, let v(i) measure player i’s individual worth or value
when the latter acts on his/her own. This, bluntly speaking, refers to the case of a trivial ‘one-
man-band’ coalition. Any non-trivial coalition must satisfy two properties. Intuitively, there
must be an incentive for each individual to join a coalition and obtain something more than
he/she would get if standing alone. Moreover, any non-trivial coalition must be superaddi-
tive, i.e., the coalition resulting from the merger of two previously independent coalitions
must be able to attain more than the sum of payoffs or utilities attainable by its constituent
parts as autonomous coalitions: cooperation always helps.

Then, define the grand coalition as C, i.e., the coalition gathering all the n players involved
in the game. The value of the grand coalition is

v(C) = max
sC

n∑
i=1

ui (sC) (10.5)

where sC = (s1, s2, s3, . . . , sn) is the list of strategies of all players in the grand coalition
and ui (·) is the utility or objective function of player i. The value v(C) is also called the
characteristic function of coalition C and measures the total amount of transferable utility that
can be distributed across its members via some agreeable rule. Any sub-coalition (sometimes
called proper coalition) of size c, with 1 < c<C, also has a characteristic function,

v(c) = max
sc

c∑
j=1

u j (sc) (10.6)

which can be thought of as the maximum payoff attainable by its members irrespective of the
behaviour undertaken by outsiders c+1, c+2, . . . ,n. Equivalently, it can also be understood
as measuring the total payoff that coalition c can guarantee (and distribute to) its members
if the outsiders play against this coalition, i.e., behaving so as to minimize the coalition’s
worth.

At this point, we have to introduce the concept of imputation: given v and C, the
imputation I(v,C) is a list of payoffs

πC = (π1,π2, . . . , πn) (10.7)

such that

πi ≥ v(i) for all i (10.8)

and

n∑
i=1

πi = v(C) (10.9)

Condition (10.8) establishes that the imputation must be individually rational, i.e., each
agent must have an incentive to join the coalition. Condition (10.9) spells out a collective
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rationality requirement. The latter also embodies Pareto efficiency, as players cannot achieve
more than what is allowed by the grand coalition.2

Now pay attention to the following crucial definition.

DEFINITION 10.1 The core C(v,C) of the game, if it exists, is the subset of the set of
imputations I(v,C) that is non-dominated by any blocking coalition cb.

The meaning of this definition may indeed look a bit obscure at first sight. It can be spelled
out more clearly in these terms. The core must satisfy both individual and group rationality,
i.e., there must be an incentive for each agent to join the grand coalition, and there must
be no proper sub-coalition in a position to outperform the grand coalition, i.e., able to grant
its members at least as much as they could get by adhering to the grand coalition. If such a
coalition exists, it can in fact get along on its own and block the grand one. Consequently,
you may understand the core as the subset of all possible imputations that are Pareto-efficient
and cannot be improved upon by any (proper) sub-coalition.

Note that, unfortunately, the core may not exist – that is, there are games in which the set of
Pareto-efficient and non-dominated imputations may in fact be empty. Without discussing the
properties that a game must possess to ensure the presence of a non-empty core and delving
into the details of the formal proof,3 I will confine myself to saying that, in general, the core
will be non-empty in games where any imputations v(c) generated by proper coalitions do
not dominate the improper ‘one-man-band’ coalition, v(i).

A relevant issue connected with the emptiness of the core is whether this fact implies
that cooperation is altogether impossible and, in a sense, invalidates the idea that a group of
individuals could be guided by some plausible form of collective rationality. If a society or
community cannot collectively improve upon the outcome yielded by conflicting individual
interests, then atomistic behaviour is inherently costly and should be replaced by planning:
a centralized decision-making process controlled by a single benevolent dictator. Of course,
the one in control may turn out not to be benevolent, and Orwell’s Big Brother is there to
remind us about the unpleasant implications of this perspective.

10.2.2 The axiomatic approach to cooperation: the Shapley value

The basic idea behind the Shapley value (Shapley, 1953) is to define a numerical index
measuring the value that each single player assigns to the fact of taking part in a game,
individually or as a member of a coalition. In other words, the Shapley value is a list (a vector,
to be precise) of numbers, each one measuring the actual coalitional power of a specific
player.

Let N =1,2,3, . . . ,n be the set of all players involved, and c be a proper coalition of size c
including player i , with a characteristic function v(c), while v(c− i) measures the value that
the same coalition would attain by excluding player i . Accordingly, the marginal (individual)
contribution of i to this coalition is


i = v(c) − v(c− i) (10.10)

The Shapley value defines a criterion4 to be used to impute the reward or payoff to each
player on the basis of his/her individual contribution 
i to the coalition.

Shapley’s construction proceeds by axiomatization. The value Vi (c) for player i has to
respect the following axioms.
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• Group rationality:
∑c

i=1 Vi (c) = v(c), i.e., the allocation of payoffs across individuals
exhausts what is collectively achieved by the coalition.

• Equal treatment: if any two players i and j in the coalition are ‘equivalent’ in terms of
their individual contributions to the coalition, then Vi (c) = Vj (c), i.e., they receive the
same reward.

• Null player condition: if the marginal contribution of player i coincides with the value of
the same player as a ‘one-man-band’ coalition, whereby 
i (c) = v(c) − v(c− i) = v(i),
then such a player should be rewarded accordingly, with Vi (c) = v(i).

Relying on this set of axioms,5 the Shapley value is calculated taking into account that
player i can adhere to several proper coalitions. Consider all the possible coalitions whose
size is c. The Shapley value is

Vi (c) =
∑
c⊆N

(c− 1)! (n − c)!

n!

i (c) (10.11)

This is nothing other than a weighted average of the marginal contributions that i could
bring to all the possible coalitions of size c that can be formed by players belonging to N .6

It should be noted that the core and the Shapley value do not coincide in general, and are not
even necessarily reciprocally compatible: if the core is non-empty, the Shapley value may
or may not belong to the core. The reason is to be found in the instability caused by the
incentive for secessions of existing coalitions.

10.3 Examples
It is now time to see some applications to real-world problems. The three games contained
in the last part of this chapter deal with topics belonging to international relations and
environmental economics, respectively.

10.3.1 Mutual defence: alliances, the core and the Shapley value

Building up, and eventually enlarging, alliances to share the defence burden is a topic of
great interest in the field of international relations. The creation of NATO and its enlarge-
ment process is probably the most striking example of all.7 The following game is based on
Gardner (1995) and Sandler (1999).

Suppose that three contiguous countries, A, B and C, are contemplating the possibility
of signing a pact to create a mutual defence alliance. In the benchmark case, each country
is a unit square with four borders of unit length to protect from an external threat in any
direction. The three countries are configured as in Figure 10.4 so as to form a rectangle.

For simplicity, the cost of defending a country or the alliance against an attack from abroad
is taken to be proportional to the extent of the perimeter. In particular, protecting each side
of these countries involves a unit cost. Consequently, v(i)=−4, i = A, B,C, is the cost that
country i has to bear when defending its borders on its own. Similarly, v(a) represents the
cost of protecting an alliance of countries in a coalition of size a.

Now suppose that the presidents/premiers and foreign affairs ministers of these countries
sit around the same table to play a cooperative game whose subject is the construction of an
alliance possibly taking the form of the grand coalition A, whose value is

v(A) = v(A, B,C)=−8 (10.12)
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A B C

Figure 10.4 Sharing the defence burden: the benchmark case

Note that all three countries:

• are aware that three proper coalitions are possible, with values corresponding respectively
to

v(A, B)=−6, v(B,C)=−6, v(A,C)=−8 (10.13)

• know that (i) country B is in the best position to form any coalition because it shares two
sides with the other countries, and (ii) the coalition involving countries A and C has no
gains at all to offer as these countries are not contiguous with each other, and therefore
we may expect the alliance between A and C to play no role at all in negotiations.

If any proposal on a grand alliance giving rise to a payoff allocation u = (u A,uB ,uC ) is
on the table, in order to belong to the core, it must satisfy the condition

v(a) ≤ ui , i = A, B,C (10.14)

for any possible coalition a (otherwise countries in a would be better off in a and reject the
proposal). This translates into the following set of 23 − 1 = 8 − 1 = 7 conditions:

v(i)= −4 ≤ ui , i = A, B,C

v(A, B) = −6 ≤ u A + u B

v(B,C) = −6 ≤ u B + uC (10.15)

v(A,C) = −8 ≤ u A + uC

v(A) = −8 ≤ u A + u B + uC

Now, using the transformation

u′
i = ui + 4 (10.16)
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Figure 10.5 The core and Shapley value of the benchmark case

the list (10.15) can be rewritten as follows, so as to measure how much is actually being
saved on total defence costs by any coalitions:

v(i)= 0 ≤ u′
i , i = A, B,C

v(A, B) = 2 ≤ u′
A + u′

B

v(B,C) = 2 ≤ u′
B + u′

C (10.17)

v(A,C) = 0 ≤ u′
A + u′

C

v(A) = 4 ≤ u′
A + u′

B + u′
C

which can be easily used to investigate geometrically the solution of this cooperative game.
This is done in Figure 10.5.

The triangle represents the Pareto-efficient plan along which players can locate themselves
through bargaining. It is a surface because of the presence of three players. Point (0,4,0)

identifies the best agreement for country B; likewise, points (4,0,0) and (0,0,4) represents
the best agreements for countries A and C, respectively.

Any allocation corresponding to a point of the triangle above the horizontal line v(A, B)=
2=u′

A + u′
B is dominated by the alliance involving A and B and excluding C. Similarly, any

allocation corresponding to a point located to the south-east of the positively sloped line
v(B,C) = 2 = u′

B + u′
C is dominated by the proper coalition involving B and C only. The

rhombus outlined by the intersections between these lines and the perimeter of the triangle
is the core, whose points are undominated by either proper coalition.

Furthermore, applying (10.11), we may identify the Shapley value as the triple (1,2,1),
which exhausts the total payoff equal to 4 by imputing it entirely to the players, with the
highest payoff accruing to country B reflecting the coalitional value of the latter. It is also
worth noting that the point corresponding to the Shapley value does belong to the core: in
particular, it is identified geometrically as the intersection of the diagonals of the rhombus
at SV, in Figure 10.5.
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A

BC

Figure 10.6 A triangular world

So far, I have briefly reiterated what you may find in Gardner (1995, pp. 401–5) and
in Sandler (1999, pp. 731–4). An interesting alternative is that where all countries have
two sides in common, which makes them entirely symmetric. This is the case illustrated in
Figure 10.6, where this region of the world is triangular, each country being itself a triangle
nested in the first.

Repeating the same exercise as in the benchmark case, one obtains (I will skip the payoff
transformation procedure for brevity):

v(i)= 0 ≤ u′
i , i = A, B,C

v(A, B) = 2 ≤ u′
A + u′

B

v(B,C) = 2 ≤ u′
B + u′

C (10.18)

v(A,C) = 2 ≤ u′
A + u′

C

v(A) = 6 ≤ u′
A + u′

B + u′
C

The above list shows that (i) unlike what happened in the benchmark set-up, all proper coali-
tions are equivalent, and (ii) the gain generated by the grand alliance is higher here than in
the previous model, as each country is contiguous with the remaining two. The core is the
region of the triangular world covering all the allocations undominated by any of the three
proper coalitions. Moreover, the Shapley value is the triple (2,2,2), reflecting again the full
symmetry of the game.

10.3.2 Coalition stability and the persistence of unipolarism

Another interesting problem that has to do with alliances (and coalitions) is the issue of the
persistence of unipolarism, which we have dealt with in Chapter 8. There, it was treated as a
purely non-cooperative game. Here, we may take a further view at the same model from the
standpoint of cooperative games, examining in particular the satellites’ incentive to form a
coalition.

To do so, let me recall the basic elements of the set-up. Players are one global power and
two satellites. The status quo ante is that the global power is hegemonic, and the satellites
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contemplate the feasibility of a countervailing coalition. The interpretation of symbols is the
same as in Chapter 8.

If the satellites form a coalition, each receives a payoff of

ui (0,C)= ci − k + C (10.19)

Otherwise, if satellite i receives a subsidy and this prevents the formation of the alliance, the
payoff is

ui (σ,NC)= ci + σ (10.20)

At this point let me introduce some changes to the picture. First of all, define by ui (0,0)= ci

the utility level of a satellite in the absence of both the coalition and the subsidy. Then, unlike
what happens in the non-cooperative game, here there are two mutually exclusive perspec-
tives: either the coalition forms (because either no subsidy is being paid or it is insufficient
to avoid it) or not (because the subsidy has done its job). Moreover, the global power pays
only a single subsidy to a single satellite for the sake of jeopardizing the alliance. Hence, the
alternative perspectives for the global power are

UG(σ,NC)= cG − σ +βσ + P (10.21)

if a subsidy is paid and this prevents the formation of a coalition, or

UG(0,C)= cG + P −βC (10.22)

otherwise.
Now note that ui (0,0) is strictly lower than both ui (0,C) and ui (σ,NC), so that there

is an incentive to invest in the coalition, but there is also an incentive to accept the global
power’s subsidy. If the latter is weaker than the former, the coalition is unstable and the
global power may reward a single satellite to attain its own goal, the persistence of unipo-
larism. This of course requires that paying a subsidy is convenient as opposed to letting the
satellites build the coalition. The two conditions are

σ > C − k (10.23)

for the satellite, and

σ <
βC

1 −β
(10.24)

for the global power. These inequalities are compatible if

βC

1 −β
> C − k (10.25)

or, equivalently, if

C(2β − 1)> k(β − 1) (10.26)

Since β < 1 by assumption, any β ∈ (0,1/2) is sufficient to ensure that the global power
destabilizes the alliance by paying a subsidy corresponding to slightly more than C − k.
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10.3.3 Coalition stability and the environment

As you surely know, the USA initially didn’t sign the Kyoto Agreement. More recently, the
COP15 meeting ended up with goodwill declarations that may not really deliver what seem
to be – nominally – the intentions of the participants. Environmental policy is clearly a matter
of agreements. Therefore, it is the ideal topic to be treated with the tools of bargaining and
cooperative game theory. Here I am offering you a basic sketch of an environmental game
where the players (countries) have to decide whether to join the coalition of those worrying
about the planet (and investing to solve, or at least to mitigate, the planet’s problems) or not
to join and just free-ride on others’ efforts. I will single out the conditions whereby one of
these countries prefers not to join the coalition, leaving to the remaining two the burden of
investing.

There are three fully symmetric (identical) countries, A, B and C (possibly the same as
in the previous example, except that the particular shape of their borders is now irrelevant).
They are aware that industrial activities produce a negative external effect e on the environ-
ment (e.g., pollution and global warming). In the absence of any investment to mitigate it,
the payoff accruing to each country is a welfare level equal to

w(0)= y − e (10.27)

where y is national income, the same for all. The zero in parentheses indicates that no country
is investing.

There are three possible cases. The first is the ‘one-man-band’ coalition, with a single
country – say, A – investing an amount of resources r to preserve the environment, and the
remaining two free-riding upon it. In this case, payoffs are

wi
A(1)= y − e

k
− r

w
f r
B (1)= w

f r
C (1)= y − e

k
(10.28)

where superscripts i and f r stand for investor and free-rider, respectively. Parameter k > 1
measures the effectiveness of the investment r .

The second case is that of a proper coalition, with two countries – say, A and B – investing
an amount k each. Here, payoffs are

wi
A(2)= wi

B(2)= y − e

2k
− r

w
f r

C (1)= y − e

2k
(10.29)

The third and last case describes the grand coalition, with

wi
A(3)=wi

B(3)=wi
C (3)= y − e

3k
− r (10.30)

Let’s go step by step. First, we have to check whether there exists an individual incentive
to invest when the remaining two countries, for sure, don’t do it. This is the case provided
that wi

A(1)>w(0), or equivalently

y − e

k
− r ≥ y − e (10.31)
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which implies that

r ≤ e

(
1 − 1

k

)
(10.32)

Second, we have to examine the individual incentive to join the proper coalition made up
by two countries. The stability of this coalition requires two conditions: (i) a member should
not want to abandon it to become a free-rider, and (ii) the outsider should prefer not to join
it. That is, the following inequalities must be simultaneously satisfied:

y − e

2k
− r ≥ y − e

k
(10.33)

and

y − e

2k
≥ y − e

3k
− r (10.34)

Condition (10.33) says that the payoff generated by the proper coalition must be higher than
that generated by free-riding on the sole investor left after a unilateral deviation. Condition
(10.34) says instead that the outsider must be better off by free-riding upon investors (rather
than joining the coalition, which would thus become the grand one). Inequality (10.33)
implies that

e

2k
≥ r (10.35)

while (10.33) is satisfied for all

r ≥ e

6k

Hence, the proper coalition is stable for all

r ∈
[ e

6k
,

e

2k

]
(10.36)

That is, if r falls into the above interval, country C prefers not to join the coalition as it is
ultimately convenient to free-ride on the latter’s efforts.

Further reading

In addition to the references mentioned in the text, comprehensive overviews of bargaining
and cooperation can be found in Aumann and Shapley (1974), Shubik (1982), Friedman
(1986), Moulin (1988, 1995), Binmore (1992), Osborne and Rubinstein (1994), Montet and
Serra (2003) and Rasmusen (2006). A detailed analysis of bargaining games can be found
in Roth (1979); see also Kennan and Wilson (1993). On the experimental approach to bar-
gaining, see Roth (1994). For more on other solution concepts for cooperative games, see
Shapley (1962), Aumann and Drèze (1974), Maschler et al. (1979) and Roth (1988), inter
alia. For an exposition of environmental games, see Dinar et al. (2009), Tisdell (2009) and
Anderson (2010).
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Notes

1 The origins: a bit of history

1 Indeed, the community of young game theorists working at Princeton in the early 1950s (Nash,
Kuhn, etc.) themselves invented a parlour game they called ‘Hex’ (on this particular episode, see
Nasar, 1998).

2 The discussion on how exactly one should interpret Zermelo’s theorem is still going on. To my
knowledge, the latest updating of this discussion is in Schwalbe and Walker (2001).

3 Additionally, von Neumann was indeed strongly anti-communist. In a famous interview released
to Life magazine, when asked about the possibility of a first strike with nuclear weapons on the
USSR, he said ‘If you say why not bomb them tomorrow, I say why not today? If you say today at
five o’clock, I say why not one o’clock?’ (reported by Poundstone, 1992, p. 4). As we shall see in
Chapter 3, this statement is very much reminiscent of backward induction.

4 To appreciate his figure and role in modern mathematics, consider that von Neumann solved one
of the 23 problems appearing in Hilbert’s programme. Moreover, his systematization of quantum
mechanics is still a most elegant example of mathematical architecture (von Neumann, 1932). I’ll
say more about the relevance of this work and its connections with a few aspects of game theory in
Chapter 3.

5 Later, von Neumann frankly admitted: ‘without Oskar I would not have written that book’
(as reported by Samuelson, 2001, p. 302).

6 In this and many other respects, the movie drastically differs from the book of the same title written
by Sylvia Nasar (1998).

7 For a detailed account of this episode and von Neumann’s reaction, see Nasar (1998, chapter 9).
8 A more thorough assessment should also include, at least, evolutionary game theory, which has

an identity of its own and is of great relevance for biologists. Indeed, Maynard Smith (1982) has
developed the concept of evolutionary stable strategy with the specific purpose of studying the
strategic aspects of evolutionary behaviour in nature.

9 See, for instance, Schotter and Schwödiauer (1980, p. 480).
10 After the end of the Cold War, much more information has been made accessible to the general

public. The websites of both institutions (www.rand.org and www.onr.navy.mil) report detailed
accounts of the history and mission of both institutions, and what used to be confidential reports
are now downloadable working papers.

11 Classical examples are Intriligator (1971), Başar and Olsder (1982), Mehlmann (1988) and Dockner
et al. (2000).

12 By ‘early sources’ I mean the literature published between the end of World War II and the climax
of the Cold War, say, the early 1980s.

13 Rufus Isaacs joined the RAND Corporation in autumn 1948. Then, starting from 1949, Isaacs and
Bellman discussed new ideas about dynamic games and optimal control theory at RAND seminars,
whose ultimate outcomes must be identified in Isaacs’ tenet of transition and Bellman’s dynamic
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programming principle. In fact, the latter can be considered as a special case of the former. The
same consideration applies to Pontryagin’s maximum principle.

2 What is a game?

1 As well as to a large number of people – myself included – who have experienced similar situations
over the last two decades.

2 In cases like this, the object is a public good. What makes it radically different from other non-public
ones is the fact that it is non-excludible and non-rival.

3 A cautionary note: throughout the book, I will use the terms action and strategy as synonymous.
Well, strictly speaking, they define different things, as one can quickly ascertain by consulting any
(even slightly) more advanced textbook in game theory. An action is a discrete strategy (as in Matri-
ces 2.1 and 2.2), while in general there are games played in continuous strategies, i.e., where players
pick strategies from continuous intervals of real numbers. Yet, being more rigorous in this respect
would hinder the readability of the book, while the level of approximation whereby action and
strategy can be considered as perfect substitutes will do for my purposes.

4 To be more rigorous, one should define the players’ utility functions, whose arguments can be those
mentioned in the text, as well as many others. Then, players’ behaviour would be aimed at the
maximization of such utility functions.

5 Therefore, in the early days of game theory, it was also labelled as the Kuhn tree.
6 This is somewhat trivial in trees associated with 2 × 2 matrices, but certainly is not so in the

uncountably many games that cannot be reduced to 2 × 2 matrices.

3 Solving a game

1 This is a very delicate aspect of game theory and economics in general. Nowadays, the same consid-
eration also applies to most of the social sciences where an analogous approach is adopted (although
it may not be unique or dominant). A thorough discussion of the common knowledge assumption
would take us very far from the target of the present book, and therefore I will abstain from dwelling
upon it any further. The interested reader may have a look at Binmore and Brandenbunger (1990)
and Geanakoplos (1994).

2 As a useful exercise, one may verify that the outcome (s12, s22) is also selected by the minimax
criterion, i.e., when each agent plays aggressively against the rival.

3 This term is named after the Italian scholar Vilfredo Pareto (1848–1923). The concept of Pareto
efficiency can be briefly defined with reference to any situations involving an allocation of income,
wealth or other resources, as follows. A Pareto-efficient allocation is that in which it is impossible
to make an agent better off without necessarily making at least one other worse off.

4 The proof of the theorem is omitted as it is clearly beyond the scope of the present volume. The
interested reader may find it in Fudenberg and Tirole (1991) and Osborne and Rubinstein (1994),
inter alia.

5 Note that, although the district attorney is forced to interrogate the two players sequentially, still
information is imperfect – as if the prisoners were interrogated simultaneously by two different
attorneys – because they cannot communicate with each other.

6 Well, one could argue that the disaster that happens when she goes to the Superbowl and he goes to
the movie theatre would yield largely negative payoffs. Although reasonable, this is inessential to
our understanding of the game. Note that this outcome is not so unreasonable, as it can be thought
to be the result of a purely altruistic attitude on the part of both players.

7 Again, also here there’s a disastrous outcome, (c, c), giving rise to the least desirable payoffs as
they cross the bridge and crash in the middle of it. However, as in the battle of the sexes, zeros
will do.

8 That is, the game we are about to examine has been constructed on the basis of a well-known
informal discussion about the arising of social conventions and rules in primitive societies, which
can be found in Rousseau (1755).

9 That is, in games like this, there seems to be a recursive nature implicit in the coordination problem
initially associated to the multiplicity of Nash equilibria: in trying to solve this coordination issue,
players generate a similar one linked to the ambiguity in the order of deletion. This may look
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like a purely philosophical problem, but this example shows that it may well have severe practical
consequences.

10 There exists an alternative but entirely equivalent tree where player 2 is at the root while player 1 is
at the intermediate nodes.

11 The games featuring this property are often labelled as ‘Stackelberg-solvable games’ (see
d’Aspremont and Gérard-Varet, 1980), after the Austrian mathematical economist Heinrich von
Stackelberg, who is recognized as the first to have investigated sequential play in non-cooperative
games (Stackelberg, 1934).

12 See, for instance, McKelvey and Palfrey (1992), Nagel and Tang (1998) and Palacios-Huerta and
Volij (2009).

13 See Güth et al. (1982), Güth (1995) and Gale et al. (1995), inter alia.
14 By the way, do you remember von Neumann’s reply to the young Nash when the latter rushed into

von Neumann’s office back in 1949 (if you don’t, go back to Chapter 1). The clockwise behaviour
followed by players in the matching pennies game, as a result of unilateral deviations, indeed
denotes the lack of a fixed point in the matrix.

15 For a contemporary revisitation of the dispute, see Hawking and Penrose (1996), with Hawking
playing Bohr’s role and Penrose playing Einstein’s. A sketch of the equivalence between economics
and physics when it comes to probabilities is given in the appendix to this chapter.

16 The material presented here is based on Lambertini (2000).
17 Erwin Schrödinger, together with Niels Bohr, Albert Einstein, Paul Dirac, Werner Heisenberg and

Wolgang Pauli, is one of the founding fathers of quantum physics. The remainder of this section
borrows from Hawking and Penrose (1996) and Penrose (1989, 1997).

18 This can be viewed as a Gedankenexperiment (thought experiment), in that we must not necessarily
lock a cat into a box to verify the validity of what follows. In general, a Gedankenexperiment ‘is
consistent with the known laws of physics, even though it may not be technically feasible. So, mea-
suring the acceleration due to gravity on the surface of the Sun is a Gedankenexperiment, whereas
measuring the Doppler shift of sunlight as seen from a spaceship moving with twice the veloc-
ity of light is nonsense’ (Gasiorowicz, 1996, p. 21, fn. 14). In the present case, one might replace
technically feasible with politically correct.

19 von Neumann himself motivates his interest in quantum physics on the basis of his dissatisfaction
with Dirac’s formalization of the theory (see the author’s preface in von Neumann (1932)).

20 Physicists keep having lively arguments concerning the alternative interpretation of such a state-
ment, i.e., whether states ca and cd coexist in parallel universes or in the experimenter’s
mind. As far as the present book is concerned, this distinction, although intriguing, can be
disregarded.

4 Understanding economics

1 Of course, a monopoly may not last forever, for several plausible reasons. For instance, some other
firms may enter after having patented new technologies or products. I’ll come to games dealing with
this issue below.

2 I agree that it is much less than elegant to cite a work of one’s own, but if you want to know more
on the genesis of the so-called Bertrand model, see Lambertini and Mosca (2001) and references
therein.

3 Remember that, in order to be appealing, a deviation must yield a strictly higher payoff to the
deviator, as compared to what the same player gets by sticking to the candidate equilibrium outcome.

4 William Vickrey was the first to formalize the second-price auction (see Vickrey, 1962). He won the
Nobel Prize in 1996, a few days before he died. The discipline investigating (inter alia) the formal
structure of auctions is mechanism design, with a strong connection to game theory. In 2007, Leonid
Hurwicz, Eric Maskin and Roger Myerson were awarded the Nobel Prize for their contribution to
the optimal design of mechanisms.

5 In the jargon of industrial economics, this assumption says that the innovation is minor, or non-
drastic. A drastic innovation grants the innovator monopoly power (with reference to the Bertrand
game, any process innovation lowering the unit production cost c is automatically drastic).

6 In 2002, the patent laws in North America and the EU were harmonized, so that the duration of a
patent on a major or drastic innovation is now 20 years on both sides of the Atlantic.
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7 In this respect, an exemplifying story that many among you may remember is one that involved
Airbus and Boeing in the late 1980s. The competition between Boeing and Airbus, in particular
at its early stages, is a recurrent parable in any discussion about strategic trade policy involving
the adoption of R&D subsidies – that helped Airbus enter the civil air transport industry, which of
course was seen as unfair from the US standpoint (see Farnsworth, 1990; Krugman and Obstfeld,
1988; see also Krugman, 1987).

8 Note that, under the reverse sequence of play with the incumbent placed at the root, fighting would
indeed be the subgame perfect outcome. Yet, a game where the incumbent fights entry before the
entrant goes into the market is pure nonsense. The only sound interpretation of this game under
sequential play is that depicted in Figure 4.2: if the outsider doesn’t enter, there is no strategic
interaction, which of course rules out a price war.

9 Recalling some of the X-Files we encountered in Chapter 1, it is fair to note that the internet is the
by-product of Arpanet, which was first conceived for military use only.

10 Of course, this does not apply to cellular phones, which may be used to check email, take notes,
shoot digital pictures, etc. In passing, it is worth mentioning the existence of positional goods yield-
ing positional or status externalities. This is approximately the opposite of a network effect, since
the positional externality decreases with the number of people able to access the same consumption
pattern – if anybody can buy a yellow Porsche Carrera cabriolet, the latter ceases to be a status
symbol.

11 For the sake of completeness, I should mention open-source software here. It is easy to understand
that a thorough discussion of standardization and compatibility should also take into account R&D
investments, the related patents establishing property rights, and their social desirability.

12 This effect is known as switching cost. For an overview of the theory of markets with switching
costs, see Klemperer (1987, 1995).

13 Observe that inequality (4.14) is the condition that identifies a Nash equilibrium (you may go back
to Chapter 3 to check this out).

14 This debate has generated such a large literature that it would be impossible to mention a fairly
complete list of the most important contributions. I will confine myself to citing the core papers of
Kydland and Prescott (1977) and Barro and Gordon (1983a, b).

15 This and the following game are loosely based on Downing and White (1989) and Milliman and
Prince (1989).

16 This is clearly the case if R&D is fully subsidized, i.e., σ =k. This is, however, not strictly necessary
to provide the entire industry with the appropriate incentive to invest in environmentally friendly
technologies.

5 Repeated games and collusive behaviour

1 Note that, if the terminal date is T , then the game is repeated T + 1 times, as the initial date is t =0.
2 One should take this assessment with a pinch of salt, as the asset in question might well be

much more risky than government bonds. The recent financial crisis is there to prove beyond any
reasonable doubt that this is not a remote possibility.

3 Again, in view of the recent financial crisis, the assumption of full refunding is not necessarily
100 per cent realistic.

4 The proof is beyond the scope of this book, and therefore I will skip it. However, for those familiar
with Keynesian macroeconomics, it may be interesting to note that the mechanism generating (5.8)
is the same one that yields the aggregate demand multiplier (see, e.g., Blanchard, 1997, chapter 3).

5 However, observe that experimental evidence points out that players tend to solve efficiently finitely
repeated prisoners’ dilemma games. See Dreber et al. (2008) and Rand et al. (2009), inter alia.

6 However, most of us believe that this should be attributed to Robert Aumann.
7 In this chapter, for the sake of simplicity, I will assume that there are no environmental externalities.

For an interesting analysis of the relationship between collusion, environmental policy and R&D for
green technologies, see Damania (1996).

8 Alternatively, one could envisage a deviation taking place at an arbitrary time τ during the
supergame. This wouldn’t make any difference, however. The reason is that, as long as the horizon
is infinitely long, one may just relabel τ = 0 and obtain exactly the same perspective.

9 This exercise is broadly based upon Majerus (1988), where a more general set-up allowing for the
presence of product differentiation is considered.
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10 A simplified version of such proof can be found in Rasmusen (2006, p. 112).
11 As the supergame lasts forever, if it is rational to fight entry at t = 0, then it is also rational to do it

at any later date. As a result, if I adopts strategy f in the first period, firm E is correctly induced to
believe that the incumbent will adopt it also at any point in the future.

6 Understanding politics

1 These requirements are axioms, i.e., that must be intuitively true and cannot be proven. We’ll come
back to the axiomatic approach in Chapter 10.

2 For the sake of being provocative, I could say that Hotelling – Bertrand = Downs. But I’m too
serious to say anything like this in the main text. A simple note will do.

3 The reason for this assumption is to avoid perverse cases with the Left choosing a platform on the
right-hand side of the preference spectrum (and conversely for the Right).

4 One could easily extend the model to allow for the presence of abstention. In this regard, see,
for example, Hinich and Ordeshook (1970), Slutsky (1975) and Ordeshook (1992, chapter 3) and
references therein.

5 An extension of the model specifically addressing this aspect of the model is laid out in the next
section.

6 Again, this admittedly drastic assumption is adopted to keep things as simple as possible. A qualita-
tively analogous conclusion can be shown to hold under appropriate conditions in the more general
case of asymmetric but still positive relocation costs, CL 	= CR .

7 Because the number of contributions dealing with this issue is extremely large, I will confine myself
to redirect the interested reader to the beautiful overview contained in Persson and Tabellini (2000).

8 One could argue that the other party will itself make announcements to this regard. In order not to
add any further complications, I am ruling out this possibility.

9 It is fair to say that this extensive form game is similar to others we have already seen earlier in the
book (see, e.g., Figure 4.2).

7 Wargames

1 For further historical details on the battle of the Bismarck Sea, see Liddell Hart (1970, chapter 29).
2 Several detailed accounts of historical facts are available in the literature. See, for instance, Liddell

Hart (1970), Keegan (1989) and Beevor (2009).
3 Escalations are also observed in other fields, where players overinvest in advertising, R&D or elec-

toral campaigns (see Chapters 4 and 6). In such cases, however, the consequences are a great deal
less harmful than in arms races.

4 For a revisitation of the dollar auction game in escalation models where the focus is explicitly on
international relations, see O’Neill (1986) and Leininger (1989).

5 The following, strictly speaking, does not coincide with what is traditionally considered as the MAD
game. I have adapted its structure to reflect the features of the Cuban missile crisis. For the original
formulation of MAD, see, e.g., Gardner (1995, chapter 6).

6 To enrich our understanding of what exactly escalation means in this game, I may add that John F.
Kennedy ordered (among other things) the Strategic Air Command bombers, armed with a gross
total of 7000 megatons of nuclear weapons, to be kept aloft around the clock. For more details on
this and other aspects, see Rhodes (1995).

7 This was actually a comprehensive attempt at selling an anodyne interpretation to the public in
the West, but was essentially false. The neutron bomb, also known as ERW (Enhanced Radiation
Weapon), would have caused environmental effects much worse than those that resulted from the
nuclear incident that destroyed one of the Chernobyl reactors in April 1986.

8 I know, I know: all payoffs are disastrously negative (they measure terrible losses on both sides),
so the idea of ranking outcomes according to the Pareto criterion sounds pretty much like a joke,
but the decoupling strategy was also taking into account some idea of convenience that we may
approximate here with Pareto efficiency.

9 As you may know, this measure is defined in terms of the equivalent amount of TNT. In itself,
50 kton means a terrible destructive power: approximately twice that of the atomic bombs that
erased Hiroshima and Nagasaki in August 1945.

10 For a detailed account, see Fitzgerald (2001).
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11 The choice of either strategy – in this case, whether or not to build a shield – may in fact signal an
underlying attitude (aggressive or inoffensive, for instance). In this regard, an illuminating read is
Fudenberg and Tirole (1984).

12 For the arising of the prisoners’ dilemma structure in arms races, see Lichbach (1990).
13 All right, this is quite strong an assumption, leaving the initial set-up unmodified. For the analysis of

the bearings of asymmetric effects exerted by a country’s shield on the rival’s payoffs, see Chassang
and Padró i Miquel (2009).

14 For more on the concepts of risk and risk aversion in the theory of international relations, see
O’Neill (2001).

8 Trade, security and hegemony

1 This may indeed sound like a justification of globalization. In fact, this view should be considered
with a little caution, as it fits well the case of trade among countries with similar or at least com-
parable levels of income and consumer tastes (e.g., the EU, USA and Japan), while it is unable to
describe the kind (and consequences) of trade between largely asymmetric countries, or more gen-
erally between the northern and southern hemispheres of the planet – in this regard, see Krugman
(1979) and Flam and Helpman (1987).

2 For a wonderful account of the rise and fall of Great Britain as a sea power from the Tudors to the
present day, see Kennedy (1976).

3 For further insights on these issues, see Snidal (1985), Yarbrough and Yarbrough (1986, 1987) and
Powell (1991), inter alia.

4 The material presented here is based on Lambertini (2006).
5 In this regard, the existing literature is too wide to allow for an exhaustive listing, but see

Morgenthau (1948), Waltz (1979) and Gilpin (1981), inter alia.
6 See also Ikenberry (1998/99, 2001) and Keohane (1989). Horowitz (2001) points out the relevance

of appropriately accounting for risk-aversion, economic growth and political rigidities in assessing
the performance of the balance-of-power theory.

7 Quoting Haass (1999, p. 37): ‘trading some American power for a more stable international system
would be a good deal for America and the world’.

8 A three-country world is also considered in some of the existing literature to analyse several issues.
For instance, Wagner (2004) uses it to investigate the relation between bargaining and war.

9 The subsidy could, for example, consist of a pure money transfer or granting the satellites free
access to G’s domestic market, i.e., a free-trade agreement.

10 Note that the consumption level is not sensitive to the presence or absence of the subsidy. This will
hold for the satellites as well. This entails that here I choose to abstract from any endogenous rela-
tionship between domestic welfare and international security, which relates to the ‘guns or butter’
debate.

11 This is acceptable insofar as the alliance is not a public good, i.e., it takes two to tango. The analysis
of the game between satellites illustrating this feature of the model is given in the appendix to this
chapter.

12 On the other hand, taking β ∈ (0,2/3) is necessary but by no means sufficient to ensure the opposite
result, i.e., that 2k(1−β)<C(2−3β). To see this, consider that, provided 2−3β >0, this inequal-
ity is equivalent to C/(2k)>(1−β)/(2−3β). Now, while we know that C/(2k)>1 surely, in order
for the coalition to be viable, it is also true that (1 −β)/(2 − 3β)< 1 for all β ∈ (0,1/2). Therefore,
if β ∈ (1/2,2/3), then (1 − β)/(2 − 3β) > 1 so that C/(2k) might be lower than (1 − β)/(2 − 3β)
in this range.

13 An alternative version of the one-shot set-up as a cooperative game is given in Chapter 10.
14 Alternatively, one could use Axelrod’s (1981, 1984) tit-for-tat strategies, reaching qualitatively

similar conclusions. See Chapter 5.
15 The objection could be raised that governments do not last indefinitely. However, the present anal-

ysis is designed with the view that they may be sufficiently forward-looking to closely mimic the
behaviour of a single player living forever. Incidentally, this is in accordance with observation, at
least with respect to the issue at hand.

16 Except, possibly, by invoking the focal point refinement (Schelling, 1960). See Chapter 3.
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9 The role of information

1 The model is a simplified version of Mirrlees (1975, 1999), Holmström (1979), Shavell (1979) and
Grossman and Hart (1983).

2 The idea that the principal can be taken to be risk-neutral, or indifferent, relies on the (untold)
possibility for him/her to hold a portfolio of different assets (one being the firm we are looking at
in this game) whose returns are reciprocally uncorrelated or even inversely correlated. Assuming
risk-neutrality for the agent is, admittedly, a bit hard to swallow. For more on risk, uncertainty and
portfolio theory, see Varian (1992).

3 Note that here the wage is not defined in terms of effort (which the principal cannot observe by
assumption) but rather in terms of output level (the only thing that the principal observes, in addition,
of course, to the market price and consequently profits).

4 This definition dates back, at least, to Nelson (1974).
5 Given that this would imply that the buyer doesn’t know the type of the seller, this game could

also be interpreted as one of incomplete information. Traditionally, however, it is considered as a
prototypical game of asymmetric information.

6 If instead p(T )π E
w + [1 − p(T )]πd > 0 and πW I

w + δπM > (1 + δ)πd, the game has no Bayesian
equilibrium in pure strategies. I leave this case out of the picture, as it is more complicated and
ultimately inessential to the comprehension of the spirit of this game. If you are curious about the
proof, see Montet and Serra (2003, p. 191).

7 If you want to have a look at the explicit expression by which the entrant computes the ex post
probability of facing a tough incumbent, please see the appendix to this chapter.

8 This material is based on Tirole (1988, appendix to chapter 2).
9 This is a hedonic approach to consumer preferences that dates back to Mussa and Rosen (1978).

A fine introduction to this topic can be found in Tirole (1988, chapter 2).
10 The dismissal of out-of-equilibrium beliefs involves the use of sequential rationality, yet another

relevant refinement of the Nash equilibrium, which I am not explicitly dealing with here. See Kreps
and Wilson (1982b) and Cho (1987), inter alia.

11 Should it decide to remain out of the ‘nuclear club’, country 1 would put itself at a disadvantage
with respect to country 2, which might then be in a position to impose humiliating decisions on to
country 1. This might explain the ranking of payoffs in the matrix.

10 Bargaining and cooperation

1 See Aumann (1985, 1987). You may also go back to Chapter 1.
2 There is more to it, although I’m well aware that by inserting any additional condition I may

cause you to skip this part entirely. Collective rationality (10.9) also implies a feasibility condi-
tion v(C) ≥∑N

i=1 πi ; however, this is not necessarily compatible with individual rationality (10.8),
and the additional constraint v(C)≥∑N

i=1 vi(i) must be satisfied.
3 See Shapley (1967) and Owen (1968).
4 There are other ‘values’, although perhaps less relevant than Shapley’s (see, e.g., Owen, 1968).
5 In some classes of games, additional axioms are also introduced. This is a delicate aspect that goes

well beyond the scope of the present exposition. See Owen (1968) and Myerson (1991).
6 The symbol ‘!’ means ‘factorial’. In mathematics, the factorial of a positive integer n, denoted by n!,

is the product of all positive integers less than or equal to n. For example, 3!= 1 × 2 × 3 = 6. Note
that n! becomes very large rather quickly, as 4!=1×2×3×4=24 but 5!=1×2×3×4×5=120.

7 Those of you interested to read more on this issue may see Olson and Zeckhauser (1966), Sandler
and Cauley (1975), Sandler and Forbes (1980), Morrow (1991) and Hartley and Sandler (1999,
2001).
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